【題目】如圖,是一圓柱形輸水管的橫截面,陰影部分為有水部分,如果水面寬8cm,水的最大深度為2cm,求該輸水管的半徑是多少?
【答案】解:過點(diǎn)O做OC⊥AB于點(diǎn)D,連接OA.
設(shè)半徑長為rcm,
∵OC⊥AB,
∴AD= AB
= ×8
=4(cm),
∵CD=2cm∴OD=r﹣2(cm)
在Rt△AOD中,由勾股定理得:(r﹣2)2+42=r2
r2﹣4r+4+42=42
4r=20
r=5,
答:該水管的半徑是5cm.
【解析】先過點(diǎn)O作OD⊥AB于點(diǎn)D,連接OA,由垂徑定理可知AD= AB,設(shè)OA=r,則OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.
【考點(diǎn)精析】通過靈活運(yùn)用垂徑定理的推論,掌握推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧C、平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條;推論2 :圓的兩條平行弦所夾的弧相等即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點(diǎn)P在AD邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在這段時(shí)間內(nèi),線段PQ有(。┐纹叫杏AB?
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,數(shù)軸被折成90°,圓的周長為4個(gè)單位長度,在圓的4等分點(diǎn)處標(biāo)上數(shù)字0,1,2,3,先讓圓周上數(shù)字2所對(duì)應(yīng)的點(diǎn)與數(shù)軸上的數(shù)3所對(duì)應(yīng)的點(diǎn)重合,數(shù)軸固定,圓緊貼數(shù)軸沿著數(shù)軸的正方向滾動(dòng),那么數(shù)軸上的數(shù)2018將與圓周上的數(shù)字________重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=AB.于是可得出結(jié)論“直角三角形中, 30°角所對(duì)的直角邊等于斜邊的一半”.
請(qǐng)根據(jù)從上面材料中所得到的信息解答下列問題:
(1)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,∠B=30°時(shí),△ACD的周長= .
(2)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點(diǎn),DE⊥AB,垂足為E,那么BE:EA= .
(3)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點(diǎn),且AE=DC,AD、BE交于點(diǎn)P,作BQ⊥AD于Q,若BP=2,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在線段上依次添加1個(gè)點(diǎn),2個(gè)點(diǎn),3個(gè)點(diǎn),……,原線段上所成線段的總條數(shù)如下表:
添加點(diǎn)數(shù) | 1 | 2 | 3 | 4 |
線段總條數(shù) | 3 | 6 | 10 | 15 |
若在原線段上添加n個(gè)點(diǎn),則原線段上所有線段總條數(shù)為( )
A. n+2 B. 1+2+3+…+n+n+1 C. n+1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試和筆試,面試中包括形體和口才,筆試中包括專業(yè)水平和創(chuàng)新能力考察,他們的成績(百分制)如下表:
候選人 | 面試 | 筆試 | ||
形體 | 口才 | 專業(yè)水平 | 創(chuàng)新能力 | |
甲 | 86 | 90 | 96 | 92 |
乙 | 92 | 88 | 95 | 93 |
若公司根據(jù)經(jīng)營性質(zhì)和崗位要求認(rèn)為:形體、口才、專業(yè)水平、創(chuàng)新能力按照5:5:4:6的比確定,請(qǐng)計(jì)算甲、乙兩人各自的平均成績,看看誰將被錄。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)下面是小馬虎解的一道題
題目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度數(shù).
解:根據(jù)題意可畫出圖,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老師,會(huì)判小馬虎滿分嗎?若會(huì),說明理由.若不會(huì),請(qǐng)將小馬虎的的錯(cuò)誤指出,并給出你認(rèn)為正確的解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,螞蟻在5×5的方格(每個(gè)小方格的邊長均為1 cm)上沿著網(wǎng)格線運(yùn)動(dòng).它從A處出發(fā)去尋找B,C,D處的伙伴,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向,那么圖中:
(1)A→D(________,________);D→B(________,________);C→B(________,________).
(2)若螞蟻的行走路線為A→B→C→D,請(qǐng)計(jì)算螞蟻?zhàn)哌^的路程.
(3)若螞蟻從A處出發(fā)去尋找伙伴,它的行走路線依次為(+1,+2),(+3,-1),(-2,+2),請(qǐng)?jiān)趫D中標(biāo)出這只螞蟻伙伴的位置E.
(4)在(3)中,若螞蟻每走1 cm需要消耗1.5焦耳的能量,則螞蟻在尋找伙伴E的過程中總共需要消耗多少焦耳的能量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場為了促銷,推出兩種促銷方式:
方式一:所有商品打7.5折銷售:
方式二:一次購物滿200元送60元現(xiàn)金.
(1)楊老師要購買標(biāo)價(jià)為628元和788元的商品各一件,現(xiàn)有四種購買方案:
方案一:628元和788元的商品均按促銷方式①購買;
方案二:628元的商品按促銷方式①購買,788元的商品按促銷方式②購買;
方案三:628元的商品按促銷方式②購買,788元的商品按促銷方式①購買;
方案四:628元和788元的商品均按促銷方式②購買.
你給楊老師提出的最合理購買方案是 .
(2)通過計(jì)算下表中標(biāo)價(jià)在600元到800元之間商品的付款金額,你總結(jié)出商品的購買規(guī)律是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com