(2011•西藏)如圖,如果將矩形紙沿虛線①對折后,沿虛線②剪開,剪出一個直角三角形,展開后得到一個等腰三角形,展開后的三角形的周長是( 。
分析:嚴格按照圖的示意對折,裁剪后得到的是直角三角形,虛線①為矩形的對稱軸,依據(jù)對稱軸的性質虛線①平分矩形的長,即可得到沿虛線②裁下的直角三角形的短直角邊為14÷2-5=2,虛線②為斜邊,據(jù)勾股定理可得虛線②為 2
5
,據(jù)等腰三角形底邊的高平分底邊的性質可以得到,展開后的等腰三角形的底邊為4,故得到等腰三角形的周長.
解答:解:根據(jù)題意可得:三角形的底邊為2(14÷2-5)=4,
腰的平方為:22+42=20,
因此等腰三角形的腰為:
20
=2
5
,
則展開后的三角形的周長為:4+2
5
×2=4+4
5

故選:D.
點評:本題主要考查學生的動手能力和對稱相關性質的運用能力,解決本題的難點是利用折疊的性質得到等腰三角形的底邊長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•西藏)如圖,直線a∥b,∠1=50°,∠2=75°,則∠3的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•西藏)如圖,已知∠1=∠2,要得到△ABD≌△ACD,還需從下列條件中補選一個,則錯誤的選法是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•西藏)如圖,在△ABC中,D是BC延長線上的一點,∠B=50°,∠ACD=110°,則∠A等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•西藏)如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點C,E是⊙O上的一點,并且
∠BEC=45°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為5cm,求陰影部分的面積.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•西藏)如圖,直線y=kx-3與x軸、y軸分別交于B、C兩點,且
OB
OC
=
1
2

(1)求B點坐標和k值;
(2)若點A(x,y)是直線y=kx-3上在第一象限內的一個動點,當點A在運動過程中,試寫出△AOB的面積S與x的函數(shù)關系式;(不要求寫出自變量的取值范圍)
(3)探究:
①當A點運動到什么位置時,△AOB的面積為
9
4
,并說明理由;
②在①成立的情況下,x軸上是否存在一點P,使△AOP是等腰三角形?若存在,請直接寫出滿足條件的所有P點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案