【題目】如圖,,,,則的度數(shù)是  

A. B. C. D.

【答案】D

【解析】

根據(jù)全等三角形的對應(yīng)角相等可知ACB=∠ACB,給等式的兩邊同時減去BCA,還可得到ACA′=∠BCB′;

結(jié)合圖形中隱含條件ACB′=∠ACA′+∠ACB+∠BCB,將已知各角的度數(shù)代入即可求出ACA的度數(shù).

∵△ACB≌△ACB′,

∴∠ACB′=∠ACB.

∵∠BCA′+∠BCB′=∠BCA′+∠ACA,

∴∠ACA′=∠BCB′.

∵∠ACA′=∠BCB′,∠ACB=30°,∠ACB′=110°,

∴∠ACB′=∠ACA′+∠ACB+∠BCB

∴2∠ACA′+30°=110°,

∴∠ACA′=40°.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠C=90°,ACBCAD平分∠CAB,交BCD,能否在AB上確定一點E,使BDE的周長等于AB的長?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將含有30°角的直角三角板OAB如圖放置在平面直角坐標(biāo)系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉(zhuǎn)75°,則點A的對應(yīng)點A′的坐標(biāo)為( 。

A.( ,﹣1)
B.(1,﹣
C.( ,﹣
D.(﹣ ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進一批肥料,為了驗證這批肥料的重量,抽出 10 袋進行稱重,每袋以 50 千克為標(biāo)準(zhǔn),超出部分記為正,不足部分記為負(fù),10 袋的重量分別如下:+5,﹣3,﹣8,+6,+4,+8,﹣2,﹣12,+8,+5

(1)按每袋 50 千克為標(biāo)準(zhǔn),抽出的 10 袋肥料的重量超出或不足多少千克?

(2)若購進這批肥料共有 500 袋,問這批肥料的總重量約為多少?

(3)若按每袋 120 元購進,140 元賣出,則賣完這批肥料的總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且AB10.動點P從點O出發(fā),以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為tt0)秒.

1)寫出數(shù)軸上點B表示的數(shù)   ;當(dāng)t3時,OP   

2)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時追上點P?

3)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時PR相距2個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,對角線AC、BD相交于點O,EOC的中點,連接BE,過點AAMBE于點M,交BD于點F.

(1)求證:AF=BE;

(2)求點EBC邊的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】襄陽市文化底蘊深厚,旅游資源豐富,古隆中、習(xí)家池、鹿門寺三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學(xué)生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B、游兩個景區(qū);C、游一個景區(qū);D、不到這三個景區(qū)游玩.現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:

(1)八(1)班共有學(xué)生人,在扇形統(tǒng)計圖中,表示“B類別”的扇形的圓心角的度數(shù)為;
(2)請將條形統(tǒng)計圖補充完整;
(3)若張華、李剛兩名同學(xué),各自從三個景區(qū)中隨機選一個作為5月1日游玩的景區(qū),則他們同時選中古隆中的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC中,D為BC上一點,E為ABC外部一點,DE交AC于一點O,AC=AE,AD=AB,∠BAC=∠DAE.

(1)求證:△ABC≌△ADE;

(2)若BAD=20°,求CDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案