科目:初中數(shù)學 來源: 題型:
如圖①,在梯形ABCD中,AD∥BC,∠A=60°,動點P從A點出發(fā),以1cm/s的速度沿著A→B→C→D的方向不停移動,直到點P到達點D后才停止.已知△PAD的面積S(單位:cm2)與點P移動的時間(單位:s)的函數(shù)如圖②所示,則下列結論:①AB=BC=2cm;②cos∠CDA=;③梯形ABCD的面積為 cm2;④點P從開始移動到停止移動一共用了()秒;其中正確的結論是( )。
(第10題)
A.①② B.①③ C.①③④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
有如下四個命題:①三角形有且只有一個內(nèi)切圓;②四邊形的內(nèi)角和與外角和相等;③順次連接四邊形各邊中點所得的四邊形一定是菱形;④一組對邊平行且一組對角相等的四邊形是平行四邊形.其中的真命題是( 。
A.①②③ B.②④ C.①②④ D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.
(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;
(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′ 和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當點C′ 恰好落在邊OA上時,求點P的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知點A的坐標是(-1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC、BC,過A、B、C三點作拋物線.
(1)求點C的坐標及拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,求點D的坐標;并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD,若存在,請求出點P的坐標,若不存在,請說明理由.
(改編)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com