【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,點B的坐標為(-4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 ,點D的坐標為 (用t表示);
(2)當t為何值時,△PBE為等腰三角形?
【答案】(1)45° (t,t);(2)t=4秒或(4-4)秒
【解析】
(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標.
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結合條件進行取舍,最終確定符合要求的t值.
(1)如圖1,
由題可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四邊形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°-∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,
∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴點D坐標為(t,t).
故答案為:45°,(t,t).
(2)①若PB=PE,則t=0(舍去),
②若EB=EP,
則∠PBE=∠BPE=45°.
∴∠BEP=90°.
∴∠PEO=90°-∠BEC=∠EBC.
在△POE和△ECB中,
∴△POE≌△ECB(AAS).
∴OE=CB=OC.
∴點E與點C重合(EC=0).
∴點P與點O重合(PO=0).
∵點B(-4,4),
∴AO=CO=4.
此時t=AP=AO=4.
③若BP=BE,
在Rt△BAP和Rt△BCE中,
∴Rt△BAP≌Rt△BCE(HL).
∴AP=CE.
∵AP=t,
∴CE=t.
∴PO=EO=4-t.
∵∠POE=90°,
∴PE=(4-t).
延長OA到點F,使得AF=CE,連接BF,如圖2所示.
在△FAB和△ECB中,
∴△FAB≌△ECB.
∴FB=EB,∠FBA=∠EBC.
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+∠EBC=45°.
∴∠FBP=∠FBA+∠ABP
=∠EBC+∠ABP=45°.
∴∠FBP=∠EBP.
在△FBP和△EBP中,
∴△FBP≌△EBP(SAS).
∴FP=EP.
∴EP=FP=FA+AP
=CE+AP.
∴EP=t+t=2t.
∴(4-t)=2t.
解得:t=4-4
∴當t為4秒或(4-4)秒時,△PBE為等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】生產(chǎn)某種農(nóng)產(chǎn)品的成本每千克20元,調(diào)查發(fā)現(xiàn),該產(chǎn)品每天銷售量y(千克)與銷售單價x(元/千克)滿足如下關系:,設這種農(nóng)產(chǎn)品的銷售利潤為w元.
(1)求w與x之間的函數(shù)關系式.
(2)該產(chǎn)品銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)物價部門規(guī)定這種產(chǎn)品的銷售價不得高于每千克28元,該農(nóng)戶想在這種產(chǎn)品經(jīng)銷季節(jié)每天獲得150元的利潤,銷售價應定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BD⊥AB于點B,AC⊥AB于點A,且BD=3,AC=2,AB=m,在線段AB上找一點E,使△BDE與△ACE相似,若這樣的點E有且只有兩個,則m的值是______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級(1)班的小華和小紅兩名學生10次數(shù)學測試成績?nèi)缦卤恚ū?/span>I)所示:
小花 | 70 | 80 | 90 | 80 | 70 | 90 | 80 | 100 | 60 | 80 |
小紅 | 90 | 80 | 100 | 60 | 90 | 80 | 90 | 60 | 60 | 90 |
現(xiàn)根據(jù)上表數(shù)據(jù)進行統(tǒng)計得到下表(表Ⅱ):
姓名 | 平均成績 | 中位數(shù) | 眾數(shù) |
小華 | 80 | ||
小紅 | 80 | 90 |
(1)填空:根據(jù)表I的數(shù)據(jù)完成表Ⅱ中所缺的數(shù)據(jù);
(2)老師計算了小紅的方差請你計算小華的方差并說明哪名學生的成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船從位于燈塔C的北偏東60°方向,距離燈塔60 n mile的小島A出發(fā),沿正南方向航行一段時間后,到達位于燈塔C的南偏東45°方向上的B處,這時輪船B與小島A的距離是( )
A. n mileB.60 n mileC.120 n mileD.n mile
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 已知于x的元二次方程x2﹣6x+2a+5=0有兩個不相等的實數(shù)根x1,x2.
(1)求a的取值范圍;
(2)若x12+x22﹣x1x2≤30,且a為整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某玩具商店以每件60元為成本購進一批新型玩具,以每件100元的價格銷售則每天可賣出20件,為了擴大銷售,增加盈利,盡快減少庫存,商店決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):若每件玩具每降價1元,則每天可多賣2件.
(1)若商店打算每天盈利1200元,每件玩具的售價應定為多少元?
(2)若商店為追求效益最大化,每件玩具的售價定為多少元時,商店每天盈利最多?最多盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學課外活動小組的同學.利用所學的數(shù)學知識,測底部可以到達的學校操場上的旗桿AB高度,他們采用了如下兩種方法:
方法1:在地面上選一點C,測得CB為40米,用高為1.6米的測角儀在C處測得旗桿頂部A的仰角為28°;
方法2:在相同時刻測得旗桿AB的影長為17.15米,又測得已有的2米高的竹桿的影長為1.5米.
你認為這兩種方法可行嗎?若可行,請你任選一種方法算出旗桿高度(精確到0.1米)若不可行,自己另設計一種測量方法(旗桿頂端不能到達),算出旗桿高度(結果可用字母表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩名同學在一次用頻率估計概率的試驗中統(tǒng)計了某一結果出現(xiàn)的頻率,繪制出統(tǒng)計圖如圖所示,則符合這一結果的試驗可能是( )
A.拋一枚硬幣,正面朝上的概率
B.擲一枚正六面體的骰子,出現(xiàn)點的概率
C.轉動如圖所示的轉盤,轉到數(shù)字為奇數(shù)的概率
D.從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com