如圖1,點(diǎn)A、B是雙曲線y=
kx
(k>0)上的點(diǎn),分別經(jīng)過A、B兩點(diǎn)向x軸、y軸作垂線段AC、AD、BE、BF,AC和BF交于點(diǎn)G,得到正方形OCGF(陰影部分),且S陰影=1,△AGB的面積為2.
精英家教網(wǎng)
(1)求雙曲線的解析式;
(2)在雙曲線上移動(dòng)點(diǎn)A和點(diǎn)B,上述作圖不變,得到矩形OCGF(陰影部分),點(diǎn)A、B在運(yùn)動(dòng)過程中始終保持S陰影=1不變(如圖2),則△AGB的面積是否會(huì)改變?說明理由.
分析:(1)由于正方形OCGF的面積是1,得出OC=CG=1,即點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B縱坐標(biāo)為1.由點(diǎn)A、B是雙曲線y=
k
x
上的點(diǎn),得出點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)都是k,從而可用含k的代數(shù)式表示AG,BG,再根據(jù)△AGB的面積為2,列出關(guān)于k的方程,求解即可;
(2)由于△AGB的面積=
1
2
AG•BG,所以本題即求
1
2
AG•BG的值是否為一個(gè)常數(shù).為此,設(shè)矩形OCGF的邊OC=m,則點(diǎn)A的橫坐標(biāo)為m,由S陰影=OC•OF=1,可知OF=
1
m
,即點(diǎn)B縱坐標(biāo)為
1
m
.然后由點(diǎn)A、B是雙曲線y=
k
x
上的點(diǎn),得出點(diǎn)A的縱橫坐標(biāo)與點(diǎn)B的橫坐標(biāo),從而可用含m的代數(shù)式表示AG,BG,進(jìn)而求出
1
2
AG•BG的值,從而得出結(jié)果.
解答:解:(1)∵四邊形OCGF是正方形,
∴OC=CG=GF=OF,∠CGF=90°,
∵OC2=S陰影=1,
∴OC=CG=GF=OF=1,
∴點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B縱坐標(biāo)為1.
∵點(diǎn)A、B是雙曲線y=
k
x
上的點(diǎn),
∴點(diǎn)A的縱坐標(biāo)為y=
k
1
=k
,點(diǎn)B橫坐標(biāo)為x=
k
1
=k
,
∴AC=k,BF=k,
∴AG=k-1,BG=k-1.
∵∠AGB=∠CGF=90°,
∴S△AGB=
1
2
AG•BG=
1
2
(k-1)
2=2,
解得k=3(取正值).
∴反比例函數(shù)的解析式為y=
3
x
;

(2)點(diǎn)A、B在運(yùn)動(dòng)過程中△AGB的面積保持不變.
理由如下:
設(shè)矩形OCGF的邊OC=m.
∵S陰影=OC•OF=1,∴OF=
1
m

∴點(diǎn)A的橫坐標(biāo)為m,點(diǎn)B縱坐標(biāo)為
1
m

∵點(diǎn)A、B是雙曲線y=
3
x
上的點(diǎn),
∴點(diǎn)A的縱坐標(biāo)為y=
3
m
,點(diǎn)B橫坐標(biāo)為x=
3
1
m
=3m

∴AC=
3
m
,BF=3m.
又FG=OC=m,CG=OF=
1
m
,
∴AG=AC-CG=
3
m
-
1
m
=
2
m
,BG=BF-FG=3m-m=2m,
∴S△AGB=
1
2
AG•BG=
1
2
2
m
•2m=2.
∴點(diǎn)A、B在運(yùn)動(dòng)過程中△AGB的面積保持不變.
點(diǎn)評(píng):本題考查了反比例函數(shù)的圖象的性質(zhì)以及正方形、矩形的性質(zhì),利用形數(shù)結(jié)合解決此類問題,是非常有效的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們把既有外接圓又有內(nèi)切圓的四邊形稱為雙圓四邊形,如圖1,四邊形ABCD是雙圓四邊形,其外心為O1,內(nèi)心為O2
(1)在平行四邊形、矩形、菱形、正方形、等腰梯形中,雙圓四邊形有
 
個(gè);
(2)如圖2,在四邊形ABCD中,已知:∠B=∠D=90°,AB=AD,問:這個(gè)四邊形是否是雙圓四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說明理由;
(3)如圖3,如果雙圓四邊形ABCD的外心與內(nèi)心重合于點(diǎn)O,試判定這個(gè)四邊形的形狀,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐一應(yīng)用——探究的過程:

  (1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m.隧道頂部最高處距地面6.25m,并畫出了隧道截面圖.建立了如圖②所示的直角坐標(biāo)系.請(qǐng)你求出拋物線的解析式.

  (2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全.問該隧道能否讓最寬3m.最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?

  (3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型塑.提出了以下兩個(gè)問題,請(qǐng)予解答:

Ⅰ.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上.頂點(diǎn)A、B落在x軸上.設(shè)矩形ABCD的周長(zhǎng)為,求的最大值。

Ⅱ.如圖④,過原點(diǎn)作一條的直線OM,交拋物線于點(diǎn)M.交拋物線對(duì)稱軸于點(diǎn)N,P為直線OM上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q。問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河北省唐山市古冶區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河北省承德三中中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案