【題目】已知如圖,長方體的長,寬,高,點在上,且,一只螞蟻如果沿沿著長方體的表面從點爬到點,需要爬行的最短距離是多少?
【答案】需要爬行的最短距離是cm.
【解析】
將長方體沿CH、HE、BE剪開,然后翻折,使面ABCD和面BEHC在同一個平面內(nèi),連接AM;或?qū)㈤L方體沿CH、GD、GH剪開,然后翻折,使面ABCD和面DCHG在同一個平面內(nèi),連接AM;或?qū)㈤L方體沿AB、AF、EF剪開,然后翻折,使面ABEF和面BEHC在同一個平面內(nèi),連接AM;再分別在Rt△ADM、Rt△ABM、Rt△ACM中,利用勾股定理求得AM的長,比較大小即可求得需要爬行的最短路程.
解:將長方體沿CH、HE、BE剪開,然后翻折,使面ABCD和面BEHC在同一個平面內(nèi),連接AM,如圖1,
由題意可得:MD=MC+CD=5+10=15cm,AD=15cm,
在Rt△ADM中,根據(jù)勾股定理得:AM=cm;
將長方體沿CH、GD、GH剪開,然后翻折,使面ABCD和面DCHG在同一個平面內(nèi),連接AM,如圖2,
由題意得:BM=BC+MC=5+15=20cm,AB=10cm,
在Rt△ABM中,根據(jù)勾股定理得:AM=cm,
將長方體沿AB、AF、EF剪開,然后翻折,使面ABEF和面BEHC在同一個平面內(nèi),連接AM,如圖3,
由題意得:AC=AB+CB=10+15=25cm,MC=5cm,
在Rt△ACM中,根據(jù)勾股定理得:AM=cm,
∵,,,
∴,
則需要爬行的最短距離是cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:①b2=4ac,②abc<0;③a>c;④4a﹣2b+c<0,其中正確的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我區(qū)浙江中國花木城組織10輛汽車裝運完A、B、C三種不同品質(zhì)的苗木共100噸到外地銷售,按計劃10輛汽車都要裝滿,且每輛汽車只能裝同一種苗木,由信息解答以下問題:
苗 木 品 種 | A | B | C |
每輛汽車運載量(噸) | 12 | 10 | 8 |
每噸苗木獲利(萬元) | 3 | 4 | 2 |
(1)設(shè)裝A種苗木車輛數(shù)為x,裝運B種苗木的車輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式;
(2)若裝運每種苗木的車輛都不少于2輛,則車輛安排方案有幾種?寫出每種安排方案
(3)若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價為每個20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個)與銷售單價x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種健身球的銷售單價不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,A(-4,4),B(-4,-2),C(-2,2).
(1)請畫出將△ABC向右平移8個單位長度后的△A1BlC1;
(2)以O(shè)為位似中心,將△A1BlC1縮小為原來的,得到△A2B2C2,請在y軸右側(cè)畫出△A2B2C2.
(3)畫出一個三角形,使它與△ABC相似,且相似比是無理數(shù),并寫出所畫三角形與△ABC的相似比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,P均在⊙O上,且分布在直徑AB的兩側(cè),BE⊥CP于點E.
(1)求證:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com