【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:△AFD∽△CFE.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)根據(jù)兩組對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形相似證明即可;
(2)根據(jù)直角三角形的性質(zhì)得到CE=BE=AE,根據(jù)等腰三角形的性質(zhì)得到∠EAC=∠ECA,推出AD∥CE即可解決問(wèn)題;
(1)證明:∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴AD:AC=AC:AB,
∴AC2=ABAD;
(2)證明:∵E為AB的中點(diǎn),
∴CE=BE=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,
∴∠DAC=∠ECA,
∴CE∥AD,
∴△AFD∽△CFE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解九年級(jí)學(xué)生的體能狀況,從我縣某校九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題;
(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?并在答題卡上補(bǔ)全條形統(tǒng)計(jì)圖;
(2)經(jīng)測(cè)試,全年級(jí)有4名學(xué)生體能特別好,其中有1名女生,學(xué)校準(zhǔn)備從這4名學(xué)生中任選兩名參加運(yùn)動(dòng)會(huì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出女生被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3),B(2,5),C(4,2)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)
(1)將△ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A1,請(qǐng)畫(huà)出△A1B1C1;
(2)作出△ABC關(guān)于O點(diǎn)成中心對(duì)稱的△A2B2C2,并直接寫(xiě)出A2,B2,C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2是否成中心對(duì)稱?若是,請(qǐng)寫(xiě)出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在正方形ABCD中,點(diǎn)E、F分別為邊BC與CD上的點(diǎn),且∠EAF=45°,AE與AF分別交對(duì)角線BD于點(diǎn)M、N,則下列結(jié)論正確的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=6,BC=8,則這個(gè)三角形的內(nèi)切圓的半徑是( )
A.5B.2C.5或2D.2或-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<12),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( 。
A.4或5B.4或7C.4或5或7D.4或7或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P是△ABC的重心,過(guò)P作AB的平行線DE,分別交AC于點(diǎn)D,交BC于點(diǎn)E,作DF//BC,交AB于點(diǎn)F,若四邊形BEDF的面積為4,則△ABC的面積為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=4,BC=8,∠ABC=60°.點(diǎn)P是邊BC上一動(dòng)點(diǎn),作△PAB的外接圓⊙O交BD于E.
(1)如圖1,當(dāng)PB=3時(shí),求PA的長(zhǎng)以及⊙O的半徑;
(2)如圖2,當(dāng)∠APB=2∠PBE時(shí),求證:AE平分∠PAD;
(3)當(dāng)AE與△ABD的某一條邊垂直時(shí),求所有滿足條件的⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6,AB=10.現(xiàn)分別以點(diǎn)A、點(diǎn)B為圓心,以大于AB相同的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E.若將△BDE沿直線MN翻折得△B′DE,使△B′DE與△ABC落在同一平面內(nèi),連接B′E、B′C,則△B′CE的周長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com