【題目】在某次足球訓(xùn)練中,一隊員在距離球門12米處挑射,正好射中了2.4米高的球門橫梁.若足球運行的路線是拋物線y=ax2+bx+c(如圖).現(xiàn)有四個結(jié)論:①a﹣b>0;②a<﹣;③﹣<a<0;④0<b<﹣12a.其中正確的結(jié)論是( 。
A. ①③ B. ①④ C. ②③ D. ②④
【答案】D
【解析】
根據(jù)二次函數(shù)的性質(zhì)得出a,b的符號,即可得出①正確性,再利用圖上點的坐標(biāo)得出a,b關(guān)系,即可得出答案.
∵a<0,ab異號,b>0,
∴a-b<0,故此選項①錯誤;
首先可以確定拋物線過點(12,0),(0,2.4)代入得:
144a+12b+c=0,c=2.4
得,b=-12a-,而b=-12a->0,
解得:a<-,故此選項②正確;
∴綜上所述,故此選項③錯誤;
另外,拋物線的對稱軸的橫坐標(biāo)小于6 即-<6,
a<0 則b<-12a 另外,
由圖象可以看出ax2+bx+c=0有兩個根,且滿足x1+x2>0,
則->0,而a<0,所以b>0,
因此 0<b<-12a,故此選項④正確;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,D 是 BC 邊的中點,E、F 分別在 AD 及其延長線上,CE∥BF,連接BE、CF.
(1)求證:△BDF ≌△CDE;
(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知二次函數(shù)的圖象經(jīng)過點(﹣2,8)和(﹣1,5),求這個二次函數(shù)的表達(dá)式;
(2)已知拋物線的頂點為(﹣1,﹣3),與y軸的交點為(0,﹣5),求這個拋物線相應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點,且點A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點M,在直線AB上有一點P,在雙曲線y=上有一點N,若以O(shè)、M、P、N為頂點的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標(biāo);
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了爭創(chuàng)全國文明衛(wèi)生城市,優(yōu)化城市環(huán)境,節(jié)約能源,某市公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有A、B兩種型號,其中每臺的價格,年省油量如下表:
A | B | |
價格(萬元/臺) | a | b |
節(jié)省的油量(萬升/年) | 2.4 | 2 |
經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多10萬元,購買3臺A型車比購買4臺B型車少30萬元.
(1)請求出a和b的值;
(2)若購買這批混合動力公交車(兩種車型都要有)每年能節(jié)省的油量不低于21.6萬升,請問有幾種購車方案?請寫出解答過程.
(3)求(2)中最省錢的購車方案及所需的購車款.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點A,與y軸交于點B,與直線OC:y=x交于點C.
(1)若直線AB解析式為.
①求點C的坐標(biāo);
②根據(jù)圖象,求關(guān)于x的不等式0<-x+10<x的解集;
(2)如下圖,作∠AOC的平分線ON,若AB⊥ON,垂足為E,ΔOAC的面積為9,且OA=6,P、Q分別為線段OA、OE上的動點,連接AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值:若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在邊長為1的小正方形組成的網(wǎng)格中,點.
(1)在網(wǎng)格中正確畫出平面直角坐標(biāo)系;
(2)在平面直角坐標(biāo)系中作出關(guān)于軸對稱的圖形,并將點先向右平移4個單位長度再向下平移1個單位長度得到點,寫出點的坐標(biāo);
(3)順次連接點得到,是等腰直角三角形嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com