【題目】如圖,在等腰△ABC中,ABAC∠BAC50°∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是   

【答案】50°.

【解析】

利用全等三角形的判定以及垂直平分線的性質(zhì)得出∠OBC40°,以及∠OBC∠OCB40°,再利用翻折變換的性質(zhì)得出EOEC,∠CEF∠FEO,進而求出即可;

連接BO,

∵ABAC,AO∠BAC的平分線,

∴AOBC的中垂線.

∴BOCO.

∵∠BAC50°,∠BAC的平分線與AB的中垂線交于點O

∴∠OAB∠OAC25°.

等腰△ABC中, ABAC,∠BAC50°

∴∠ABC∠ACB65°.

∴∠OBC65°25°40°.

∴∠OBC∠OCB40°.

C沿EF折疊后與點O重合,

∴EOEC,∠CEF∠FEO.

在△OEC中,

∠CEF∠FEO=(180°2×40°÷250°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為23、4、6,且相鄰兩木條的夾角均可調(diào)整。若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?

(A) 5 (B) 6 (C) 7 (D) 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于、兩點(點在點左側(cè)),是拋物線外一點,在拋物線的對稱軸上存在一點,使得值最大,則點坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),給定∠AOB=60°,及OB邊上一點C,如圖所示.到射線OA,OB距離相等的所有點組成圖形G,線段OC的垂直平分線交圖形G于點D,連接CD

1)依題意補全圖形;直接寫出∠DCO的度數(shù);

2)過點DOD的垂線,交OA于點EOB于點F.求證:CF=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,已知中,,,的頂點分別在邊、上,當(dāng)點在邊上運動時,隨之在上運動,的形狀始終保持不變,在運動的過程中,點到點的最小距離為( )

A. 5 B. 7 C. 12 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連接正八邊形的三個頂點,得到如圖所示的圖形,下列說法錯誤的是( )

A. 是等邊三角形

B. 連接,則分別平分

C. 整個圖形是軸對稱圖形,但不是中心對稱圖形

D. 四邊形與四邊形的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃在總費用2300元的限額內(nèi)租用客車送234名學(xué)生和6名教師集體外出活動,每輛客車上至少要有1名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

甲種客車

乙種客車

載客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少輛客車?

(2)請給出最節(jié)省費用的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市計劃建造一座如圖設(shè)計的塔形建筑物作為市標(biāo),最底層的圓柱形的底面半徑為,高為米,再上去的圓柱形底面半徑以的比例縮小,而樓層的高度也以同樣的比例縮小,那么要使得建筑物的表面積不超過平方米(表面積不包括最底層的底面積),樓層最高為________層.

查看答案和解析>>

同步練習(xí)冊答案