【題目】從共享單車,共享汽車等共享出行到共享充電寶,共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速普及應(yīng)用,越來(lái)越多的企業(yè)與個(gè)人成為參與者與受益者.根據(jù)國(guó)家信息中心發(fā)布的《中國(guó)分享經(jīng)濟(jì)發(fā)展報(bào)告2017》顯示,2016年我國(guó)共享經(jīng)濟(jì)市場(chǎng)交易額約為34520億元,比上年增長(zhǎng)103%;超6億人參與共享經(jīng)濟(jì)活動(dòng),比上年增加約1億人.
如圖是源于該報(bào)告中的中國(guó)共享經(jīng)濟(jì)重點(diǎn)領(lǐng)域市場(chǎng)規(guī)模統(tǒng)計(jì)圖:
(1)請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
①圖中涉及的七個(gè)重點(diǎn)領(lǐng)域中,2016年交易額的中位數(shù)是億元.
②請(qǐng)分別計(jì)算圖中的“知識(shí)技能”和“資金”兩個(gè)重點(diǎn)領(lǐng)域從2015年到2016年交易額的增長(zhǎng)率(精確到1%),并就這兩個(gè)重點(diǎn)領(lǐng)域中的一個(gè)分別從交易額和增長(zhǎng)率兩個(gè)方面,談?wù)勀愕恼J(rèn)識(shí).
(2)小宇和小強(qiáng)分別對(duì)共享經(jīng)濟(jì)中的“共享出行”和“共享知識(shí)”最感興趣,他們上網(wǎng)查閱了相關(guān)資料,順便收集到四個(gè)共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號(hào)為A,B,C,D的四張卡片(除編號(hào)和內(nèi)容外,其余完全相同)他們將這四張卡片背面朝上,洗勻放好,從中隨機(jī)抽取一張(不放回),再?gòu)闹须S機(jī)抽取一張,請(qǐng)用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識(shí)”的概率(這四張卡片分別用它們的編號(hào)A,B,C,D表示)
【答案】
(1)2038;①“知識(shí)技能”的增長(zhǎng)率為: ×100%=205%,
②“資金”的增長(zhǎng)率為: ≈109%,
由此可知,“知識(shí)技能”領(lǐng)域交易額較小,當(dāng)增長(zhǎng)率最高,達(dá)到200%以上,其發(fā)展速度驚人.
(2)
解:畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽到“共享出行”和“共享知識(shí)”的結(jié)果數(shù)為2,
所以抽到“共享出行”和“共享知識(shí)”的概率= =
【解析】解:(1)由圖可知,2016年七個(gè)重點(diǎn)領(lǐng)域的交易額分別為70、245、610、2038、3300、7233、20863,
2016年交易額的中位數(shù)是2038億元,
所以答案是:2038;
【考點(diǎn)精析】關(guān)于本題考查的條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,需要了解能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和CD相交于點(diǎn)O,∠COE=90°,OD平分∠BOF,∠BOE=50°.
(1)求∠AOC的度數(shù);
(2)求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=,∠AOB的平分線OC交AB于C,過(guò)O點(diǎn)做與OB垂直的直線ON.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BC﹣CO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線CO﹣ON以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)P、Q同時(shí)停止運(yùn)動(dòng).
(1)求OC、BC的長(zhǎng);
(2)設(shè)△CPQ的面積為S,求S與t的函數(shù)關(guān)系式;
(3)當(dāng)P在OC上Q在ON上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQ與OA交于點(diǎn)M,當(dāng)t為何值時(shí),△OPM為等腰三角形?求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無(wú)理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機(jī), 是無(wú)理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個(gè)正整數(shù)).于是( )2=( )2=2,所以,q2=2p2 . 于是q2是偶數(shù),進(jìn)而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個(gè)正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無(wú)理數(shù).
這種證明“ 是無(wú)理數(shù)”的方法是( )
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在ABCD中,延長(zhǎng)AB至點(diǎn)E,延長(zhǎng)CD至點(diǎn)F,使得BE=DF.連接EF,與對(duì)角線AC交于點(diǎn)O. 求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長(zhǎng)線相交于O點(diǎn).若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( )
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運(yùn)算題:
計(jì)算:
她發(fā)現(xiàn),這個(gè)算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關(guān)系?
(2)先計(jì)算哪步分比較簡(jiǎn)便?并請(qǐng)計(jì)算比較簡(jiǎn)便的那部分。
(3)利用(1)中的關(guān)系,直接寫出另一部分的結(jié)果。
(4)根據(jù)以上分析,求出原式的結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)探究證明:
在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E,當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;
(2)發(fā)現(xiàn)探究:
當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立,如果不成立,DE、AD、BE應(yīng)滿足的關(guān)系是_____.
(3)解決問(wèn)題:
當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),若BE=8,AD=2,請(qǐng)直接寫出DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE平分∠AOD,OF平分∠BOD.
(1)若∠AOC=70°,求∠DOE和∠EOF的度數(shù);
(2)請(qǐng)寫出圖中∠AOD的補(bǔ)角和∠AOE的余角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com