【題目】如圖,拋物線p0),點(diǎn)F0,p),直線ly=-p,已知拋物線上的點(diǎn)到點(diǎn)F的距離與到直線l的距離相等,過點(diǎn)F的直線與拋物線交于AB兩點(diǎn),AA1lBB1l,垂足分別為A1、B1,連接A1F,B1FA1O,B1O.若A1F=a,B1F=b、則△A1OB1的面積=____.(只用a,b表示).

【答案】.

【解析】

根據(jù)題意可知SA1OB1=SA1B1F,=,從而得到本題的結(jié)果.

解:∵AA1l,y軸⊥l,

AA1y軸.

∴∠AA1F=A1FO.

∵AF=AA1,

∴∠AA1F=A1FA.

∴∠A1FO=A1FA.

同理可證:∠B1FO=B1FB.

∴∠A1FB1=90°.

A1FB1的面積=A1FB1F=.

∵拋物線上的點(diǎn)到點(diǎn)F的距離與到直線l的距離相等,

O到到點(diǎn)F的距離與到直線l的距離相等,

A1OB1的面積=A1FB1的面積=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,.將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到AB'C'(點(diǎn)B,C的對應(yīng)點(diǎn)分別為點(diǎn)B,C),延長CB分別交AC,BC于點(diǎn)D,E,若DE2,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長為半徑畫;②以C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD

1)求證:△ABC≌△ADC

2)若∠BAC30°,∠BCA45°,BC2;

①求∠BAD所對的弧BD的長;②直接寫出AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面的坡度為,文化墻在天橋底部正前方8米處(的長),為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為(參考數(shù)據(jù):)

(1)若新坡面坡角為,求坡角度數(shù);

(2)有關(guān)部門規(guī)定,文化墻距天橋底部小于3米時(shí)應(yīng)拆除,天橋改造后,該文化墻是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414≈1.732);

2)確定C港在A港的什么方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為九年級數(shù)學(xué)競賽獲獎(jiǎng)選手購買以下三種獎(jiǎng)品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費(fèi)346元,若使購買的獎(jiǎng)品總數(shù)最多,則這三種獎(jiǎng)品的購買數(shù)量各為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線(a為常數(shù),a0)x軸交于O,A兩點(diǎn),點(diǎn)B為拋物線的頂點(diǎn),點(diǎn)D的坐標(biāo)為(t,0)(3t0),連接BD并延長與過O,A,B三點(diǎn)的⊙P相交于點(diǎn)C

1)求點(diǎn)A的坐標(biāo);

2)過點(diǎn)C作⊙P的切線CEx軸于點(diǎn)E.①如圖1,求證:CEDE;②如圖2,連接AC,BE,BO,當(dāng)CAEOBE時(shí),求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長為1,點(diǎn)分別是、邊上的中點(diǎn),點(diǎn)是對角線上的一個(gè)動(dòng)點(diǎn),則的最小值是( )

A. B. 1C. D. 2

查看答案和解析>>

同步練習(xí)冊答案