【題目】如圖,拋物線(a為常數(shù),a0)x軸交于O,A兩點(diǎn),點(diǎn)B為拋物線的頂點(diǎn),點(diǎn)D的坐標(biāo)為(t0)(3t0),連接BD并延長與過OA,B三點(diǎn)的⊙P相交于點(diǎn)C

1)求點(diǎn)A的坐標(biāo);

2)過點(diǎn)C作⊙P的切線CEx軸于點(diǎn)E.①如圖1,求證:CEDE;②如圖2,連接AC,BE,BO,當(dāng)CAEOBE時(shí),求的值

【答案】1A(-6,0);(2)①見解析 ;②

【解析】

1)令y=0,可得axx+6=0,則A點(diǎn)坐標(biāo)可求出;

2)①連接PC,連接PB延長交x軸于點(diǎn)M,由切線的性質(zhì)可證得∠ECD=COE,則CE=DE;

②設(shè)OE=m,由CE2=OEAE,可得m,由∠CAE=OBE可得,則m,綜合整理代入可求出的值.

1)令ax2+bax=0

axx+6=0

A(-6,0

2)連接PC,連接PB延長交x軸于M

O、AB三點(diǎn),B為頂點(diǎn)

又∵PC=PB

,

CE為切線

°,

,

CE=DE,

3)設(shè)OE=m,即Em,0

由切割定理:CE2=OE·AE

,

已知,

由角平分線定理:

即:

由①②得

t2=18t36

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(A點(diǎn)左側(cè))雙曲線的動(dòng)點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.

(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值

(2)B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式

(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求pq的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線p0),點(diǎn)F0,p),直線ly=-p,已知拋物線上的點(diǎn)到點(diǎn)F的距離與到直線l的距離相等,過點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),AA1l,BB1l,垂足分別為A1、B1,連接A1F,B1FA1O,B1O.若A1F=a,B1F=b、則△A1OB1的面積=____.(只用a,b表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】村村通公路政策,是近年來國家構(gòu)建和諧社會(huì),支持新農(nóng)村建設(shè)的一項(xiàng)重大公共決策,是一項(xiàng)民心工程,惠民工程某鎮(zhèn)政府準(zhǔn)備向甲、乙兩個(gè)工程隊(duì)發(fā)包一段村通工程建設(shè)項(xiàng)目,經(jīng)調(diào)查:甲、乙兩隊(duì)單獨(dú)完成該工程,乙隊(duì)所需時(shí)間是甲隊(duì)的2倍;甲、乙兩隊(duì)共同完成該工程需30天;若甲隊(duì)每天所需勞務(wù)費(fèi)用為2400元,乙隊(duì)每天所需勞務(wù)費(fèi)用為1500元,從節(jié)約資金的角度考慮,應(yīng)選擇哪個(gè)工程隊(duì)更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(b,c為常數(shù))

1)若拋物線的頂點(diǎn)坐標(biāo)為(11),求bc的值;

2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對稱,求c的取值范圍;

3)在(1)的條件下,存在正實(shí)數(shù)mn( mn),當(dāng)mxn時(shí),恰好有,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:a*b=,則下列等式中對于任意實(shí)數(shù) a、b、c 都成立的是( )

①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c

③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)

A. ①②③ B. ①②④ C. ①③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)上一點(diǎn),點(diǎn)是半徑上一動(dòng)點(diǎn)(不與重合),過點(diǎn)作射線,分別交弦,兩點(diǎn),在射線上取點(diǎn),使

1)求證:的切線;

2)當(dāng)點(diǎn)的中點(diǎn)時(shí),

①若,判斷以,,為頂點(diǎn)的四邊形是什么特殊四邊形,并說明理由;

②若,且,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有拋物線yax222yaxh2,拋物線yax222經(jīng)過原點(diǎn),與x軸正半軸交于點(diǎn)A,與其對稱軸交于點(diǎn)B;點(diǎn)P是拋物線yax222上一動(dòng)點(diǎn),且點(diǎn)Px軸下方,過點(diǎn)Px軸的垂線交拋物線yaxh2于點(diǎn)D,過點(diǎn)DPD的垂線交拋物線yaxh2于點(diǎn)D(不與點(diǎn)D重合),連接PD,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)①直接寫出a的值;

②直接寫出拋物線yax222的函數(shù)表達(dá)式的一般式;

2)當(dāng)拋物線yaxh2經(jīng)過原點(diǎn)時(shí),設(shè)△PDD與△OAB重疊部分圖形周長為L

①求的值;

②直接寫出Lm之間的函數(shù)關(guān)系式;

3)當(dāng)h為何值時(shí),存在點(diǎn)P,使以點(diǎn)O、A、D、D為頂點(diǎn)的四邊形是菱形?直接寫出h的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn).正方形ABCD的頂點(diǎn)C、D在第一象限,頂點(diǎn)D在反比例函數(shù)k≠0)的圖象上.若正方形ABCD向左平移n個(gè)單位后,頂點(diǎn)C恰好落在反比例函數(shù)的圖象上,則n的值是_____.

查看答案和解析>>

同步練習(xí)冊答案