【題目】已知:如圖,⊙O是△ABC的外接圓,,點(diǎn)D在邊BC上,AEBCAE=BD

1)求證:AD=CE;

2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形

【答案】(1)證明見解析;(2)證明見解析.

【解析】

試題分析:(1)根據(jù)等弧所對(duì)的圓周角相等,得出∠B=∠ACB,再根據(jù)全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;

(2)連接AO并延長,交邊BC于點(diǎn)H,由等腰三角形的性質(zhì)和外心的性質(zhì)得出AH⊥BC,再由垂徑定理得BH=CH,得出CG與AE平行且相等.

試題解析:(1)在⊙O中,∵,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,AB=CA,B=EAC,BD=AE,∴△ABD≌△CAE(SAS),∴AD=CE;

(2)連接AO并延長,交邊BC于點(diǎn)H,∵,OA為半徑,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四邊形AGCE是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1和圖2,∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,足分別為D、E.


(1)圖1中,證明:△ACE≌△CBD;

(2)圖2中,若AE=2,BD=4,計(jì)算DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某巡警騎摩托車在一條南北大道上巡邏,某天他從崗?fù)こ霭l(fā),晚上停留在A處,規(guī)定向北方向?yàn)檎,?dāng)天行駛情況記錄如下(單位:千米):+10﹣8,+7,﹣15,+6,﹣16,+4﹣2

1A處在崗?fù)ず畏?距離崗?fù)ざ噙h(yuǎn)?

2)若摩托車每行駛1千米耗油0.5升,這一天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)AB、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線k0,x0)過點(diǎn)D

1)求雙曲線的解析式;

2)作直線ACy軸于點(diǎn)E,連結(jié)DE,求△CDE的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點(diǎn)C,使三角形ABC的面積是12?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)已知點(diǎn)P是y軸正半軸上一點(diǎn),且到x軸的距離為3,若點(diǎn)P沿平行于x軸的負(fù)半軸方向以每秒1個(gè)單位長度平移至點(diǎn)Q,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABPQ的面積S為15個(gè)平方單位?寫出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式x2+3x﹣5的值為2,則代數(shù)式9﹣2x2﹣6x的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一棟5層的教學(xué)大樓,第一層沒有教室,二至五層,每層樓有6間教室,進(jìn)出這棟大樓共有兩道大小相同的大門和一道小門(平時(shí)小門不開).安全檢查中,對(duì)這3道門進(jìn)行了測試:當(dāng)同時(shí)開啟一道大門和一道小門時(shí),3分鐘內(nèi)可以通過540名學(xué)生,若一道大門平均每分鐘比一道小門可多通過60名學(xué)生.

1)求平均每分鐘一道大門和一道小門各可以通過多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分鐘內(nèi)安全撤離.這棟教學(xué)大樓每間教室平均有45名學(xué)生,問:在緊急情況下只開啟兩道大門是否可行?為什么?3道門都開啟呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,AC<AB.

(1) 用直尺和圓規(guī)作出一條過點(diǎn)A的直線l,使得點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)落在邊AB(不寫作法,保留作圖痕跡);

(2) 設(shè)直線l與邊BC的交點(diǎn)為D,且∠C=2B,請(qǐng)你通過觀察或測量,猜想線段AB、AC、CD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是小明在健身器材上進(jìn)行仰臥起坐鍛煉時(shí)的情景,圖②是小明鍛煉時(shí)上半身由ON位置運(yùn)動(dòng)到與地面垂直的OM位置時(shí)的示意圖.已知AC=0.66米,BD=0.26米,α=20°.(參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)

(1)求AB的長(精確到0.01米);

(2)若測得ON=0.8米,試計(jì)算小明頭頂由N點(diǎn)運(yùn)動(dòng)到M點(diǎn)的路徑的長度.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案