【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4),(1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點C、A、A′,求此拋物線的解析式;
(2)點M是第一象限內(nèi)拋物線上的一動點,問點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.
【答案】(1)y=﹣x2+3x+4;(2)M的坐標為(2,6).
【解析】
(1)由平行四邊形ABOC繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,且點A的坐標是(0,4),可求得點A′的坐標,然后利用待定系數(shù)法即可求得經(jīng)過點C、A、A′的拋物線的解析式;
(2)首先連接AA′,設(shè)直線AA′的解析式為:y=kx+b,利用待定系數(shù)法即可求得直線AA′的解析式,再設(shè)點M的坐標為:(x,-x2+3x+4),繼而可得△AMA′的面積,繼而求得答案.
(1)∵平行四邊形ABOC繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,且點A的坐標是(0,4),
∴點A′的坐標為:(4,0),
∵點A、C的坐標分別是(0,4)、(﹣1,0),拋物線經(jīng)過點C、A、A′,
設(shè)拋物線的解析式為:y=ax2+bx+c,
∴,解得:,
∴此拋物線的解析式為:y=﹣x2+3x+4;
(2)連接AA′,設(shè)直線AA′的解析式為:y=kx+b,
∴,解得:,
∴直線AA′的解析式為:y=﹣x+4,
設(shè)點M的坐標為:(x,﹣x2+3x+4),
則S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,
∴當x=2時,△AMA′的面積最大,最大值S△AMA′=8,
∴M的坐標為:(2,6);
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC.
(1)如圖(1),∠C>∠B,若 AD⊥BC 于點 D,AE 平分∠BAC,你能找出∠EAD 與∠B,∠C 之間的數(shù)量關(guān)系嗎?并說明理由.
(2)如圖(2),AE 平分∠BAC,F 為 AE 上一點,FM⊥BC 于點 M,∠EFM 與∠B,∠C之間有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,F為AB的中點,連接DF,EF,∠ACB=90°,∠ABC=30°.則以下4個結(jié)論:①AC⊥DF;②四邊形BCDF為平行四邊形;③DA+DF=BE;④其中,正確的 是( 。
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點C在OM上,OC=5,且點C到OA的距離為3.過點C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點C旋轉(zhuǎn),當CD與OA不垂直時(如圖2),上述結(jié)論是否成立?并說明理由;
(2)把圖1中的∠DCE繞點C旋轉(zhuǎn),當CD與OA的反向延長線相交于點D時:
①請在圖3中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,如果△ACB和△CDE均為等邊三角形,點A、D、E在同一直線上,連接BE.則AD與BE的數(shù)量關(guān)系為 ;∠AEB的度數(shù)為 度.
(2)拓展探究:如圖2,如果△ACB和△CDE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,連接BE,判斷線段AE與BE的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標.
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2,AE=6,求EC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請寫出所有的“差角”并說明理由;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖a,網(wǎng)格中的每一個正方形的邊長為1,△ABC為格點三角形,直線MN為格點直線(點A、B、C、M、N在小正方形的頂點上).
(1)僅用直尺在圖a中作出△ABC關(guān)于直線MN的對稱圖形△A′B′C′.
(2)如圖b,僅用直尺將網(wǎng)格中的格點三角形ABC的面積三等分,并將其中的一份用鉛筆涂成陰影.
(3)如圖c,僅用直尺作三角形ABC的邊AC上的高,簡單說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com