如圖,正三角形ABC內接于圓O,AD⊥BC于點D交圓于點E,動點P在優(yōu)弧BAC上,且不與點B,點C重合,則∠BPE等于   
【答案】分析:由于點P始終在優(yōu)弧BAC上移動,故∠P度數(shù)不易直接求,可轉化為求同弧所對的其他它圓周角的度數(shù).
解答:解:∵△ABC為正三角形,AD⊥BC,
∴AD為∠BAC的平分線,
∴∠BAE=60°×=30°,
又∵∠BPE=∠BAE,
∴∠BPE=30°.
點評:在解此類動點問題時,一般將位置不固定的角轉化為固定角來解,體現(xiàn)了轉化思想在解題中的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正三角形ABC的邊長為12,三個全等的小正三角形重心(即三條中線的交點)與正三角形ABC的頂點重合,且他們各有一邊與正三角形ABC的一邊平行.若小正三角形的邊長為x,且0<x≤12,陰影部分的面積為S,則能反映S與x之間函數(shù)關系的大致圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正三角形ABC的邊長為1cm,將線段AC繞點A順時針旋轉120°至AP1,形成扇形D1;將線段BP1繞點B順時針旋轉120°至BP2,形成扇形D2;將線段CP2繞點C順時針旋轉120°至CP3,形成扇形D3;將線段AP3繞點A順時針旋轉120°至AP4,形成扇形D4….設ln為扇形Dn的弧長(n=1,2,3…),回答下列問題:
(1)按照要求填表:
 1  4
ln         
(2)根據(jù)上表所反映的規(guī)律,試估計n至少為何值時,扇形Dn的弧長能繞地球赤道一周(設地球赤道半徑為6400km).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正三角形ABC的邊長為l,點M,N,P分別在邊BC,AB上,設BM=x,CN=y,AP=z,且x+y+z=1.
(1)試用x,y,z表示△MNP的面積
(2)求△MNP面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•十堰)如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設兩弧與邊BC圍成的陰影部分面積為S,當
2
≤r<2時,S的取值范圍是
π
2
-1≤S<
3
-
3
π
2
-1≤S<
3
-
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正三角形ABC內接于圓O,動點P在圓周的劣弧AB上,且不與A,B重合,則∠BPC=
60°
60°

查看答案和解析>>

同步練習冊答案