如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-1,0),B(3,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過(guò)點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P′,請(qǐng)直接寫出P′點(diǎn)坐標(biāo),并判斷點(diǎn)P′是否在該拋物線上.
(1)設(shè)y=a(x+1)(x-3),(1分)
把C(0,3)代入,得a=-1,(2分)
∴拋物線的解析式為:y=-x2+2x+3.(4分)
頂點(diǎn)D的坐標(biāo)為(1,4).(5分)

(2)設(shè)直線BD解析式為:y=kx+b(k≠0),把B、D兩點(diǎn)坐標(biāo)代入,
3k+b=0
k+b=4
,(6分)
解得k=-2,b=6.
∴直線BD解析式為y=-2x+6.(7分)
s=
1
2
PE•OE=
1
2
xy=
1
2
x(-2x+6)=-x2+3x,(8分)
∴s=-x2+3x(1<x<3)(9分)
s=-(x2-3x+
9
4
)+
9
4
=-(x-
3
2
2+
9
4
.(10分)
∴當(dāng)x=
3
2
時(shí),s取得最大值,最大值為
9
4
.(11分)

(3)當(dāng)s取得最大值,x=
3
2
,y=3,
P(
3
2
,3)
.(5分)
∴四邊形PEOF是矩形.
作點(diǎn)P關(guān)于直線EF的對(duì)稱點(diǎn)P′,連接P′E、P′F.
法一:過(guò)P′作P′H⊥y軸于H,P′F交y軸于點(diǎn)M.
設(shè)MC=m,∵COPF,
∴∠2=∠PFC,
由對(duì)稱可知∠PFC=∠P′FC,
∴∠2=∠P′FC,
則MF=MC=m,P′M=3-m,P′E=
3
2

在Rt△P′MC中,由勾股定理,(
3
2
)2+(3-m)2=m2

解得m=
15
8

∵CM•P′H=P′M•P′E,
∴P′H=
9
10

由△EHP′△EP′M,可得
EH
EP′
=
EP′
EM
,EH=
6
5

∴OH=3-
6
5
=
9
5

∴P′坐標(biāo)(-
9
10
,
9
5
)
.(13分)
法二:連接PP′,交CF于點(diǎn)H,分別過(guò)點(diǎn)H、P′作PC的垂線,垂足為M、N.
易證△CMH△HMP.
CM
MH
=
MH
PM
=
1
2

設(shè)CM=k,則MH=2k,PM=4k.
∴PC=5k=
3
2
,k=
3
10

由三角形中位線定理,PN=8k=
12
5
,P′N=4k=
6
5

∴CN=PN-PC=
12
5
-
3
2
=
9
10
,即x=-
9
10

y=PF-P′N=3-
6
5
=
9
5

∴P′坐標(biāo)(-
9
10
,
9
5
).(13分)
把P′坐標(biāo)(-
9
10
9
5
)代入拋物線解析式,不成立,所以P′不在拋物線上.(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,有一拋物線形拱橋,拱頂M距橋面1米,橋拱跨度AB=12米,拱高M(jìn)N=4米.
(1)求表示該拱橋拋物線的解析式;
(2)按規(guī)定,汽車通過(guò)橋下時(shí)載貨最高處與橋拱之間的距離CD不得小于0.5米.今有一寬4米,高2.5米(載貨最高處與地面AB的距離)的平頂運(yùn)貨汽車要通過(guò)拱橋,問(wèn)該汽車能否通過(guò)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)橫截面為拋物線形的遂道底部寬12米,高6米,如圖,車輛雙向通行,規(guī)定車輛必須在中心線右側(cè)距道路邊緣2米這一范圍內(nèi)行駛,并保持車輛頂部與遂道有不少于
1
3
米的空隙,你能否根據(jù)這些要求,建立適當(dāng)?shù)淖鴺?biāo)系,利用所學(xué)的函數(shù)知識(shí),確定通過(guò)隧道車輛的高度限制.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一座拱型橋,橋下的水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF為多少?

(1)若把它看作拋物線的一部分,在坐標(biāo)系中(如圖①),可設(shè)拋物線的表達(dá)式為y=ax2+c.請(qǐng)你填空:a=______,c=______,EF=______米;
(2)若把它看作圓的一部分,可構(gòu)造圖形(如圖②)請(qǐng)你計(jì)算:
(3)請(qǐng)你估計(jì)(2)中EF與(1)中的EF的差的近似值(誤差小于0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某建筑物的窗口如圖所示,它的上半部是半圓,下半部是矩形,制造窗框的材料總長(zhǎng)(圖中所有黑線的長(zhǎng)度和)為15m,當(dāng)半圓的半徑為多少時(shí),窗戶通過(guò)的光線最多?此時(shí),窗戶的面積是多少(結(jié)果精確到0.01m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知A、B是線段MN上的兩點(diǎn),MN=4,MA=1,MB>1.以A為中心順時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,使M、N兩點(diǎn)重合成一點(diǎn)C,構(gòu)成△ABC,設(shè)AB=x.
(1)求x的取值范圍;
(2)若△ABC為直角三角形,求x的值;
(3)探究:△ABC的最大面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,點(diǎn)C、B分別為拋物線C1:y1=x2+1,拋物線C2:y2=a2x2+b2x+c2的頂點(diǎn).分別過(guò)點(diǎn)B、C作x軸的平行線,交拋物線C1、C2于點(diǎn)A、D,且AB=BD.
(1)求點(diǎn)A的坐標(biāo):
(2)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=2x2+b1x+c1”.其他條件不變,求CD的長(zhǎng)和a2的值;
(3)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=4x2+b1x+c1”,其他條件不變,求b1+b2的值______(直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

東方商廈專銷某品牌的計(jì)算器,已知每只計(jì)算器的進(jìn)價(jià)是12元,售價(jià)是20元.為了促銷,商廈決定:凡是一次性購(gòu)買10只以上(不含10只)的顧客,每多買1只計(jì)算器,其購(gòu)買的每只計(jì)算器的售價(jià)就降低O.10元(假設(shè)顧客購(gòu)買了18只計(jì)算器,則每只計(jì)算器售價(jià)為:20-0.10×(18-10)=19.20元,顧客應(yīng)付的購(gòu)貨款為:18×19.20=345.60元),但最低售價(jià)為16元/只.
(1)求顧客至少一次性購(gòu)買多少只計(jì)算器,才能以最低價(jià)購(gòu)買?
(2)設(shè)顧客一次性購(gòu)買x(10<x≤50)只計(jì)算器時(shí),東方商廈可獲利潤(rùn)y(元),試求y與x之間的函數(shù)關(guān)系式及商廈的最大利潤(rùn);
(3)有一天,一位顧客一次性購(gòu)買了46只計(jì)算器,另一位顧客一次性購(gòu)買了50只計(jì)算器,結(jié)果商廈發(fā)現(xiàn)賣50只反而比賣46只賺的錢少.為了使每次獲利隨著銷量的增大而增大,在其他促銷條件不變的情況下,商廈應(yīng)將最低價(jià)16元/只至少提高到多少?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案