【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+4ax+4a-4a≠0)的頂點(diǎn)為A.

1)求頂點(diǎn)A的坐標(biāo);

2)過點(diǎn)(0,5)且平行于x軸的直線l,與拋物線y=ax2+4ax+4a-4a≠0)交于BC兩點(diǎn).

①當(dāng)a=1時(shí),求線段BC的長;

②當(dāng)線段BC的長不小于8時(shí),直接寫出a的取值范圍.

【答案】1)頂點(diǎn)A的坐標(biāo)為(-2,-4);(2①線段BC的長為6;0<a≤

【解析】試題分析:(1)利用配方法或頂點(diǎn)的公式進(jìn)行求解即可;

(2)①將a=1,y=5代入拋物線的解析式,解方程即可得;

②設(shè)B、C兩點(diǎn)的坐標(biāo)分別為(x1,5)、(x2,5),則BC=|x1-x2|≥8,將y=5代入 y=ax2+4ax+4a-4得ax2+4ax+4a-9=0,由根與系數(shù)關(guān)系則有:x1+x2=-4,x1x2=,利用|x1-x2|=通過計(jì)算即可得.

試題解析:(1)解法一:∵y=ax2+4ax+4a-4=ax+22-4

∴頂點(diǎn)A的坐標(biāo)為(-2,-4);

解法二:∵,=-4,

∴頂點(diǎn)A的坐標(biāo)為(-2-4);

2①當(dāng)a=1時(shí),拋物線為y=x2+4x,

y=5,得x2+4x=5

解得,x1=-5,x2=1

∴線段BC的長為6;

②設(shè)B、C兩點(diǎn)的坐標(biāo)分別為(x1,5)、(x2,5),則BC=|x1-x2|≥8,

將y=5代入 y=ax2+4ax+4a-4得:ax2+4ax+4a-4=5,即ax2+4ax+4a-9=0,

由根與系數(shù)關(guān)系則有:x1+x2=-4,x1x2=,

∵|x1-x2|=

8,

0<a≤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題.

程大位明代商人,珠算發(fā)明家被稱為珠算之父、卷尺之父.少年時(shí)讀書極為廣博,對數(shù)學(xué)頗感興趣60歲時(shí)完成其杰作《直指算法統(tǒng)宗》簡稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個(gè)更無爭小僧三人分一個(gè),大小和尚各幾丁?意思是100個(gè)和尚分100個(gè)饅頭如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完.試問大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B10),C3,0),D34).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)PPE⊥ABAC于點(diǎn)E

1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;

2)過點(diǎn)EEF⊥ADF,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?

3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以CQ,EH為頂點(diǎn)的四邊形為菱形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點(diǎn)A′的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為做好“家電下鄉(xiāng)”的惠民服務(wù),決定從廠家購進(jìn)甲、乙、丙三種不同型號的電視機(jī)108臺(tái),其中甲種電視機(jī)的臺(tái)數(shù)是丙種的4倍,購進(jìn)三種電視機(jī)的總金額不超過147 000元,已知甲、乙、丙三種型號的電視機(jī)的出廠價(jià)格分別為1 000元/臺(tái),1 500元/臺(tái),2 000元/臺(tái).

(1)求該商場至少購買丙種電視機(jī)多少臺(tái)?

(2)若要求甲種電視機(jī)的臺(tái)數(shù)不超過乙種電視機(jī)的臺(tái)數(shù),問有哪些購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線 y1kx+b 經(jīng)過點(diǎn) P4,4)和點(diǎn) Q0,﹣4),與 x 軸交于點(diǎn) A,與直線 y2mx+n 交于點(diǎn) P

1)求出直線 y1kx+b 的解析式;

2)求出點(diǎn) A 的坐標(biāo);

3)直線 y2mx+n 繞著點(diǎn) P 任意旋轉(zhuǎn),與 x 軸交于點(diǎn) B,當(dāng)PAB 是等腰三角形時(shí),直接寫出點(diǎn)B 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省泰安市)某學(xué)校將為初一學(xué)生開設(shè)ABCDEF6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了我最喜歡的一門選修課調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)

根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( 。

A. 這次被調(diào)查的學(xué)生人數(shù)為400

B. 扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°

C. 被調(diào)查的學(xué)生中喜歡選修課E、F的人數(shù)分別為80,70

D. 喜歡選修課C的人數(shù)最少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),ABBD于點(diǎn)B,EDBD于點(diǎn)D,點(diǎn)CBD上一點(diǎn).且BCDE,CDAB

1)試判斷ACCE的位置關(guān)系,并說明理由;

2)如圖(2),若把△CDE沿直線BD向左平移,使△CDE的頂點(diǎn)CB重合,此時(shí)第(1)問中ACBE的位置關(guān)系還成立嗎?(注意字母的變化)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=5AB=3,點(diǎn)E,F在直線AD上,且四邊形BCFE為菱形,若線段EF的中點(diǎn)為點(diǎn)M,則線段AM的長為

查看答案和解析>>

同步練習(xí)冊答案