【題目】如圖,在矩形ABCD中,AB=5,AD=3,點(diǎn)P是AB邊上一點(diǎn)(不與A,B重合),連接CP,過(guò)點(diǎn)P作PQ⊥CP交AD于點(diǎn)Q,連接CQ。取CQ的中點(diǎn)M,連接MD,MP,若MD⊥MP,則AQ的長(zhǎng)________。
【答案】2
【解析】分析:如圖,過(guò)M作EF⊥CD于F,則EF⊥AB,證得△MDF≌△PME,求得ME=,再利用梯形的中位線定理求解即可.
詳解:
如圖,過(guò)M作EF⊥CD于F,則EF⊥AB,
∵M(jìn)D⊥MP,
∴∠PMD=90°,
∴∠PME+∠DMF=90°,
∵∠FDM+∠DMF=90°,
∴∠MDF=∠PME,
∵M(jìn)是QC的中點(diǎn),
根據(jù)直角三角形斜邊上的中線性質(zhì)求得DM=PM=QC,
在△MDF和△PME中,,
∴△MDF≌△PME(AAS),
∴ME=DF,PE=MF,
∵EF⊥CD,AD⊥CD,
∴EF∥AD,
∵QM=MC,
∴DF=CF=DC=;
∴ME=,
∵M(jìn)E是梯形ABCQ的中位線,
∴2ME=AQ+BC,即5=AQ+3,
∴AQ=2.
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車廠一周計(jì)劃每日生產(chǎn)輛自行車,由于人數(shù)和操作原因,每日實(shí)際生產(chǎn)量分別為輛、輛、輛、輛、輛、輛、輛.
用正負(fù)數(shù)表示每日實(shí)際生產(chǎn)量與計(jì)劃量的增減情況;
該車廠本周實(shí)際共生產(chǎn)多少輛自行車?平均每日實(shí)際生產(chǎn)多少輛自行車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,將此正方形置于平面直角坐標(biāo)系中,使AB邊落在X軸的正半軸上,且A點(diǎn)的坐標(biāo)是(1,0).
(1)直線經(jīng)過(guò)點(diǎn)C,且與x軸交與點(diǎn)E,求四邊形AECD的面積;
(2)若直線l經(jīng)過(guò)點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過(guò)點(diǎn)F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個(gè)單位交軸x于點(diǎn)M,交直線l1于點(diǎn)N,求△NMF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E,F(xiàn)分別在AB、CD上,AE=CF ,且DF=BF; 求證:四邊形DEBF為菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AP垂直∠ABC的平分線BP于點(diǎn)P.若△ABC的面積為32cm2,BP=6cm,且△APB的面積是△APC的面積的3倍.則AP=________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,經(jīng)過(guò)原點(diǎn)的拋物線的解析式可以是y=ax2+bx(a≠0)
(1)對(duì)于這樣的拋物線:
當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),a=;
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),a與m之間的關(guān)系式是
(2)繼續(xù)探究,如果b≠0,且過(guò)原點(diǎn)的拋物線頂點(diǎn)在直線y=kx(k≠0)上,請(qǐng)用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過(guò)原點(diǎn)的拋物線,頂點(diǎn)A1 , A2 , …,An在直線y=x上,橫坐標(biāo)依次為1,2,…,n(為正整數(shù),且n≤12),分別過(guò)每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1 , B2 , …,Bn , 以線段AnBn為邊向右作正方形AnBnCnDn , 若這組拋物線中有一條經(jīng)過(guò)Dn , 求所有滿足條件的正方形邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)求值
(1)計(jì)算:(3.14﹣π)0+(﹣ )﹣2﹣2sin30°;
(2)化簡(jiǎn): ﹣ ÷ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com