如圖,矩形的長(zhǎng)和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點(diǎn)所在的直線自左向右勻速運(yùn)動(dòng)至等腰三角形的底與另一寬重合。設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,等腰三角形自左向右運(yùn)動(dòng)的距離為x,那么y關(guān)于x的函數(shù)關(guān)系式為

         。


。

【考點(diǎn)】面動(dòng)平移問(wèn)題,由實(shí)際問(wèn)題列函數(shù)關(guān)系式,相似三角形的判定和性質(zhì)梯形面積公式。

【分析】如圖,連接IE,

           


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 二次函數(shù)的圖象如圖所示,反比例函數(shù)與一次函數(shù)在同一平面直角坐標(biāo)系中的大致圖象是【    】

  A.   B.   C.   D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


【閱讀材料】己知,如圖1,在面積為S的△ABC中,BC=a,AC=b,AB=c,內(nèi)切⊙O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形.

∵S=S△OBC+SOAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r

(1)【類比推理】如圖2,若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),各邊長(zhǎng)分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r的值;

(2)【理解應(yīng)用】如圖3,在Rt△ABC中,內(nèi)切圓O的半徑為r,⊙O與△ABC分別相切于D、E和F,己知AD=3,BD=2,求r的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知⊙O的直徑CD為4,弧AC的度數(shù)為120°,弧BC的度數(shù)為30°,在直徑CD上作出點(diǎn)P,使BP+AP的值最小,若BP+AP的值最小,則BP+AP的最小值為       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 把直線沿y軸方向平移m個(gè)單位后,與直線的交點(diǎn)在第二象限,則m的取值范圍是【    】

A.      B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,直線l:軸交于點(diǎn)A,將直線l繞點(diǎn)A順時(shí)針旋轉(zhuǎn)75º后,所得直線的解析式為【    】

A.       B.        C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知拋物線C:過(guò)原點(diǎn),與軸的另一個(gè)交點(diǎn)為B(4,0),A為拋物線C的頂點(diǎn),直線OA的解析式為,將拋物線C繞原點(diǎn)O旋轉(zhuǎn)180°得到拋物線C1,求拋物線C、C1的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,長(zhǎng)是2寬是1的矩形和邊長(zhǎng)是1的正三角形,矩形的一長(zhǎng)邊與正三角形的一邊在同一水平線上,三角形沿該水平線自左向右勻速穿過(guò)矩形。設(shè)穿過(guò)的時(shí)間為t,矩形與三角形重合部分的面積為S,那么S關(guān)于t的函數(shù)大致圖象應(yīng)為 【    】

A.     B.       C.        D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連結(jié)BP. 將△ABP繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連結(jié)AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)EF.

      (1) 如圖1,當(dāng)0°<α<60°時(shí),在α角變化過(guò)程中,△BEF與△AEP始終存在       關(guān)系(填“相似”或“全等”),并說(shuō)明理由;

(2)如圖2,設(shè)∠ABP=β . 當(dāng)60°<α<180°時(shí),在α角變化過(guò)程中,是否存在△BEF與△AEP全等?若存在,求出αβ之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由;

(3)如圖3,當(dāng)α=60°時(shí),點(diǎn)EF與點(diǎn)B重合. 已知AB=4,設(shè)DP=x,△A1BB1的面

積為S,求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案