已知拋物線C:過原點,與軸的另一個交點為B(4,0),A為拋物線C的頂點,直線OA的解析式為,將拋物線C繞原點O旋轉(zhuǎn)180°得到拋物線C1,求拋物線C、C1的解析式。


如圖,過A作AE⊥OB于E,

∴ 拋物線C的解析式為,即。

 又∵拋物線C1是由拋物線C繞原點O旋轉(zhuǎn)180°得到,

∴ 拋物線C、C1關(guān)于原點對稱。

∴拋物線C1的頂點坐標A1為() 。

 ∴拋物線C1的解析式為,即

【考點】二次函數(shù)圖象的對稱性,待定系數(shù)法,曲線上點的坐標與方程的關(guān)系,旋轉(zhuǎn)的性質(zhì)。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


四張質(zhì)地、大小相同的卡片上,分別畫上如下圖所示的四個圖形,在看不到圖形的情況下從中任意抽出一張,則抽出的卡片既不是軸對稱圖形也不是中心對稱圖形的概率為【    】

A.               B.               C.                 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別是點E,F(xiàn),連接EF,交AD于點G,求證:AD⊥EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點所在的直線自左向右勻速運動至等腰三角形的底與另一寬重合。設矩形與等腰三角形重疊部分(陰影部分)的面積為y,等腰三角形自左向右運動的距離為x,那么y關(guān)于x的函數(shù)關(guān)系式為

         。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 有兩個全等的等腰直角三角板ABC和EFG其直角邊長均為6(如圖1所示)疊放在一起,使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針旋轉(zhuǎn),旋轉(zhuǎn)角滿足0<º<90º,四邊形CHGK是旋轉(zhuǎn)過程中兩塊三角板的重疊部分(如圖2).

(1)在上述旋轉(zhuǎn)過程中,①BH與CK有怎樣的數(shù)量關(guān)系?②四邊形CHGK的面積是否發(fā)生變化?并證明你發(fā)現(xiàn)的結(jié)論.

(2)如圖,連接KH,在上述旋轉(zhuǎn)過程中,是否存在某一位置使△GKH的面積恰好等于△ABC面積的?若存在,請求出此時KC的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當點P到達點C時停止運動,點Q也同時停止.連接PQ,設運動時間為tt >0)秒.

(1)求線段AC的長度;

(2)當點Q從點B向點A運動時(未到達A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l

①當l經(jīng)過點A時,射線QPAD于點E,求AE的長;

②當l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,拋物線與y軸相交于點A,與過點A平行于x軸的直線相交于點B(點B在第一象限).拋物線的頂點C在直線OB上,對稱軸與x軸相交于點D。平移拋物線,使其經(jīng)過點B、D,則平移后的拋物線的解析式為      。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,在邊長為4的正方形ABCD中,動點P,Q同時從A點出發(fā),沿AB→BC→CD向D點運動,點P的速度是每秒2個單位長度,點Q的速度是每秒1個單位長度,當P運動到D點時,P、Q兩點同時停止運動。設P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系式是        

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,已知拋物線與x軸交于點A,與y軸交于點B,動點Q從點O出發(fā),以每秒2個單位長度的速度在線段OA上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒。

問:△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由。

查看答案和解析>>

同步練習冊答案