【題目】圖1,菱形ABCD的頂點(diǎn)A,D在直線上,∠BAD=60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對(duì)角線AC于點(diǎn)M,C′D′交直線l于點(diǎn)N,連接MN.
(1)當(dāng)MN∥B′D′時(shí),求α的大。
(2)如圖2,對(duì)角線B′D′交AC于點(diǎn)H,交直線l與點(diǎn)G,延長(zhǎng)C′B′交AB于點(diǎn)E,連接EH.當(dāng)△HEB′的周長(zhǎng)為2時(shí),求菱形ABCD的周長(zhǎng).
【答案】(1)15°;(2)8.
【解析】
(1)四邊形AB′C′D′有一個(gè)角為60°的菱形,MN∥B′C′,可以得到△AB′D′,△B′C′D′都是等邊三角形,可證得△AB′M≌△AD′N(SAS),由∠CAD=∠BAD=30°,即可求得答案;
(2)在△AE和△AG中,∠AE=∠AG=60°, ∠EA=∠GA=α,A=A,可證得△AEB′≌△AGD′(AAS),還可以證得△AHE≌△AHG(SAS),得到B′D′=2,繼而求得答案.
(1)∵四邊形AB′C′D′是菱形,
∴AB′=B′C′=C′D′=AD′,
∵∠B′AD′=∠B′C′D′=60°,
∴△AB′D′,△B′C′D′是等邊三角形,
∵M(jìn)N∥B′C′,
∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,
∴△C′MN是等邊三角形,
∴C′M=C′N,
∴MB′=ND′,
∵∠AB′M=∠AD′N=120°,AB′=AD′,
∴△AB′M≌△AD′N(SAS),
∴∠B′AM=∠D′AN,
∵∠CAD=∠BAD=30°,
∴∠DAD′=15°,
∴α=15°.
(2)在△AB`E和△AD`G中,∠AB`E=∠AD`G,∠EAB`=∠GAD`,AB`=AD`
∴△AEB′≌△AGD′(AAS),
∴EB′=GD′,AE=AG,
∵AH=AH,∠HAE=∠HAG,
∴△AHE≌△AHG(SAS),
∴EH=GH,
∵△EHB′的周長(zhǎng)為2,
∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,
∴AB′=AB=2,
∴菱形ABCD的周長(zhǎng)為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,BE是AC邊上的中線,點(diǎn)D在射線BC上.
發(fā)現(xiàn):如圖1,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,過(guò)點(diǎn)A作AF∥BC,交BE的延長(zhǎng)線于點(diǎn)F,求的值為.
解決問題:如圖2,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長(zhǎng)線上,AD與AC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC=1:2.求的值.
應(yīng)用:若CD=2,AC=6,求BP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC=90°,直線為⊙P的切線.
⑴ 試說(shuō)明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x 的一元二次方程a x2 + bx + c = 0(a>0)有兩個(gè)不相等且非零的實(shí)數(shù)根,探究a,b,c滿足的條件.
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小華的探究過(guò)程:第一步:設(shè)一元二次方程ax2 +bx+c = 0(a>0)對(duì)應(yīng)的二次函數(shù)為y = ax2 +bx +c(a>0);
第二步:借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次方程中a,b,c滿足的條件,列表如下:
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | a,b,c滿足的條件 |
方程有兩個(gè) 不相等的負(fù)實(shí)根 | ||
①_______ | ||
方程有兩個(gè) 不相等的正實(shí)根 | ②__________ | ③____________ |
(1)請(qǐng)幫助小華將上述表格補(bǔ)充完整;
(2)參考小華的做法,解決問題:
若關(guān)于x的一元二次方程有一個(gè)負(fù)實(shí)根和一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形ABC,O為△ABC內(nèi)一點(diǎn),連接OA,OB,OC,將△BAO繞點(diǎn)B旋轉(zhuǎn)至△BCM.
(1)依題意補(bǔ)全圖形;
(2)若OA= ,OB= ,OC=1,求∠OCM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形,是動(dòng)點(diǎn),邊長(zhǎng)為4, ,則下列結(jié)論正確的有幾個(gè)( )
①; ②為等邊三角形
③ ④若,則
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,);
②當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于;
③當(dāng)m<0時(shí),函數(shù)在時(shí),y隨x的增大而減小;
④當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過(guò)x軸上一個(gè)定點(diǎn).
其中正確的結(jié)論有________ .(只需填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為對(duì)稱中心,把點(diǎn)A(3,4)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為()
A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com