【題目】已知菱形,是動點,邊長為4, ,則下列結論正確的有幾個( )
①; ②為等邊三角形
③ ④若,則
A.1B.2C.3D.4
【答案】D
【解析】
①易證△ABC為等邊三角形,得AC=BC,∠CAF=∠B,結合已知條件BE=AF可證△BEC≌△AFC;②得FC=EC,∠FCA=∠ECB,得∠FCE=∠ACB,進而可得結論;③證明∠AGE=∠BFC則可得結論;④分別證明△AEG∽△FCG和△FCG∽△ACF即可得出結論.
在四邊形是菱形中,
∵,
∴
∵
∴
∴△ABC為等邊三角形,
∴
又,
∴,故①正確;
∴,
∴∠FCE=∠ACB=60°,
∴為等邊三角形,故②正確;
∵∠AGE+∠GAE+∠AEG=180°,∠BEC+∠CEF+∠AEG=180°,
又∵∠CEF=∠CAB=60°,
∴∠BEC=∠AGE,
由①得,∠AFC=∠BEC,
∴∠AGE=∠AFC,故③正確;
∴∠AEG=∠FCG
∴△AEG∽△FCG,
∴,
∵∠AGE=∠FGC,∠AEG=∠FCG
∴∠CFG=∠GAE=∠FAC,
∴△ACF∽△FCG,
∴
∴
∵AF=1,
∴BE=1,
∴AE=3,
∴,故④正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:
根據(jù)小蕓設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:連接OA,OB,OC,
由作圖可知 OA=OB=OC( )(填推理的依據(jù))
∴⊙O為△ABC的外接圓;
∵點C,P在⊙O上,
∴∠APB=∠ACB.( )(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1,菱形ABCD的頂點A,D在直線上,∠BAD=60°,以點A為旋轉中心將菱形ABCD順時針旋轉α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN.
(1)當MN∥B′D′時,求α的大。
(2)如圖2,對角線B′D′交AC于點H,交直線l與點G,延長C′B′交AB于點E,連接EH.當△HEB′的周長為2時,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】懸索橋,又名吊橋,指的是以通過索塔懸掛并錨固于兩岸(或橋兩端)的纜索(或鋼鏈)作為上部結構主要承重構件的橋梁. 其纜索幾何形狀一般近似于拋物線.從纜索垂下許多吊桿(吊桿垂直于橋面),把橋面吊住.某懸索橋(如圖1),是連接兩個地區(qū)的重要通道. 圖2是該懸索橋的示意圖.小明在游覽該大橋時,被這座雄偉壯觀的大橋所吸引. 他通過查找資料了解到此橋的相關信息:這座橋的纜索(即圖2中橋上方的曲線)的形狀近似于拋物線,兩端的索塔在橋面以上部分高度相同,即AB=CD, 兩個索塔均與橋面垂直. 主橋AC的長為600 m,引橋CE的長為124 m.纜索最低處的吊桿MN長為3 m,橋面上與點M相距100 m處的吊桿PQ長為13 m.若將纜索的形狀視為拋物線,請你根據(jù)小明獲得的信息,建立適當?shù)钠矫嬷苯亲鴺讼担蟪鏊魉敹?/span>D與錨點E的距離.
圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號是 (把你認為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一位運動員在距籃下4米處跳起投籃,球運行的路線是拋物線,當球運行的水平距離為2.5米時,達到最大高度3.5米,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05米.
(1)建立如圖所示的直角坐標系,求拋物線的表達式;
(2)該運動員身高1.7米,在這次跳投中,球在頭頂上方0.25米處出手,問:球出手時,他跳離地面的高度是多少?.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,∠BAC=120°、OA⊥BC、若AB=4.
(1)求證:四邊形OACD為菱形.
(2)求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖4為函數(shù)與的圖象,下列結論:
(1);(2);(3)當時,;(4),其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com