【題目】利客來超市新進(jìn)一批工藝品,每件的成本是50元,為了合理定價(jià),投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)求出每天的銷售利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤為4000元?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
【答案】(1) (2)銷售價(jià)為70元或90元時(shí),利潤4000元;(3)元
【解析】
(1)根據(jù)“利潤=(售價(jià)-成本)×銷售量”列出方程;
(2)根據(jù)單件利潤×銷售量=總利潤,列方程求解可得;
(3)把y=4000代入函數(shù)解析式,求得相應(yīng)的x值;然后由“每天的總成本不超過7000元”列出關(guān)于x的不等式50(-5x+550)≤7000,通過解不等式來求x的取值范圍.
解:(1)W=(x-50)[50+5(100-x)]
=(x-50)(-5x+550)
=-5x2+800x-27500
∴W=-5x2+800x-27500(50≤x≤100);
(2):設(shè)銷售單價(jià)為x元,
由題意,得:(x-50)[50+5(100-x)]=4000,
整理,得:x2-160x+6300=0,
解之,得:x=70或x=90,均符合題意,
所以,銷售單價(jià)為70元或90元時(shí),每天的銷售利潤可達(dá)4000元;
(3)當(dāng)y=4000時(shí),-5(x-80)2+4500=4000,
解得x1=70,x2=90.
∴當(dāng)70≤x≤90時(shí),每天的銷售利潤不低于4000元.
由每天的總成本不超過7000元,得50(-5x+550)≤7000,
解得x≥82.
∴82≤x≤90,
∵50≤x≤100,
∴銷售單價(jià)應(yīng)該控制在82元至90元之間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知MN∥EF∥BC,點(diǎn)A、D為直線MN上的兩動(dòng)點(diǎn),AD=a,BC=b,AE∶ED=m∶n;
(1)當(dāng)點(diǎn)A、D重合,即a=0時(shí)(如圖1),試求EF.(用含m,n,b的代數(shù)式表示)
(2)請(qǐng)直接應(yīng)用(1)的結(jié)論解決下面問題:當(dāng)A、D不重合,即a≠0,
①如圖2這種情況時(shí),試求EF.(用含a,b,m,n的代數(shù)式表示)
圖1
圖2
圖3
②如圖3這種情況時(shí),試猜想EF與a、b之間有何種數(shù)量關(guān)系?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( 。
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價(jià)為多少時(shí),該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時(shí),把兩個(gè)可以自由傳動(dòng)的轉(zhuǎn)盤A,B分別分成4等份,3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,若指針?biāo)竷蓚(gè)區(qū)域的數(shù)字之和為奇數(shù),則甲勝;若指針?biāo)竷蓚(gè)區(qū)域的數(shù)字之和為偶數(shù),則乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.請(qǐng)問這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“流感”,某學(xué)校對(duì)教室采用藥熏法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點(diǎn)燃后的時(shí)間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點(diǎn)燃后4分鐘燃盡,此時(shí)室內(nèi)每立方米空氣中含藥量為8毫克.
(1)求藥物燃燒時(shí),y與x之間函數(shù)的表達(dá)式;
(2)求藥物燃盡后,y與x之間函數(shù)的表達(dá)式;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于2毫克時(shí),才能有效殺滅空氣中的病菌,那么此次消毒有效時(shí)間有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖工程上常用鋼珠來測量零件上小圓孔的寬口,假設(shè)鋼珠的直徑是10mm,測得鋼珠頂端離零件表面的距離為8mm,如圖所示.則這個(gè)小圓孔的寬口AB的長度是( 。
A. 5mm B. 6mm C. 8mm D. 10mm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下面是二次函數(shù)圖象的一部分,則下列結(jié)論中:①;②③方程有兩個(gè)不等的實(shí)數(shù)根;④.正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
(1)古希臘著名數(shù)學(xué)家歐幾里得在《幾何原本》提出了射影定理,又稱“歐幾里德定理”:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項(xiàng),每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).射影定理是數(shù)學(xué)圖形計(jì)算的重要定理.
其符號(hào)語言是:如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,則:(1)CD = AD·BD, (2)AC = AB·AD, (3)BC=AB·BD;請(qǐng)你證明定理中的結(jié)論(2)BC=AB·BD.
(結(jié)論運(yùn)用)
(2)如圖2,正方形ABCD的邊長為6,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E在CD上,過點(diǎn)C作CF⊥BE,垂足為F,連接OF,
①求證:△BOF∽△BED;
②若,求OF的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com