【題目】如圖工程上常用鋼珠來(lái)測(cè)量零件上小圓孔的寬口,假設(shè)鋼珠的直徑是10mm,測(cè)得鋼珠頂端離零件表面的距離為8mm,如圖所示.則這個(gè)小圓孔的寬口AB的長(zhǎng)度是( 。
A. 5mm B. 6mm C. 8mm D. 10mm
【答案】C
【解析】
連接AB,OA,過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,先根據(jù)鋼珠的直徑是10mm,鋼珠頂端離零件表面的距離為8mm求出OA及OD的長(zhǎng),再根據(jù)勾股定理即可求出AD的長(zhǎng),由垂徑定理即可得出結(jié)論.
解:連接AB,OA,過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,
∵鋼珠的直徑是10mm,鋼珠頂端離零件表面的距離為8mm,
∴OA=5mm,OD=8-5=3mm,
∵OD⊥AB,
∴在Rt△OAD中,AD===4mm,
∴AB=2AD=8mm.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:已知∠ABC=120°,作等邊△ACD,將△ACD旋轉(zhuǎn)60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)和x軸交于兩點(diǎn)A、B,和y軸交于點(diǎn)C,已知A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線(xiàn)頂點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利客來(lái)超市新進(jìn)一批工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.
(1)求出每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)為4000元?
(3)如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷(xiāo)售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績(jī)情況如圖所示:
(1)請(qǐng)?zhí)顚?xiě)下表:
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)以上(包括9環(huán))次數(shù) | |
甲 | 7 |
|
|
|
乙 |
| 5.4 |
|
|
(2)請(qǐng)你就下列兩個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行
①從平均數(shù)和方差相結(jié)合看(分析誰(shuí)的成績(jī)更穩(wěn)定);
②從平均數(shù)和命中9環(huán)(包括9環(huán))以上次數(shù)相結(jié)合看(分析誰(shuí)的潛能更大).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的外接圓,的平分線(xiàn)與相交于點(diǎn),過(guò)點(diǎn)作的切線(xiàn),與的延長(zhǎng)線(xiàn)交于點(diǎn),與的延長(zhǎng)線(xiàn)交于點(diǎn).
試判斷與的位置關(guān)系,并說(shuō)明理由;
若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,矩形中,,,是上一點(diǎn),將沿折疊,使點(diǎn)落在上一點(diǎn)處,連結(jié)、.
求的長(zhǎng)度;
設(shè)點(diǎn)、、分別在線(xiàn)段、、上,當(dāng)且四邊形為矩形時(shí),請(qǐng)說(shuō)明矩形的長(zhǎng)寬比為,并求的長(zhǎng).(如圖二)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,連接AC、BD,以BD為直徑的圓交AC于點(diǎn)E.若DE=3,則AD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是劣弧上的一點(diǎn)(端點(diǎn)除外),延長(zhǎng)BP至D,使BD=AP,連接CD.
(1)若AP過(guò)圓心O,如圖①,請(qǐng)你判斷△PDC是什么三角形?并說(shuō)明理由;
(2)若AP不過(guò)圓心O,如圖②,△PDC又是什么三角形?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com