【題目】如圖,在平面直角坐標系中,以A(5,1)為圓心,2個單位長度為半徑的⊙A交軸于點B、C.解答下列問題:
(1)將⊙A向下平移 個單位長度與軸相切;
(2) 將⊙A向左平移得到⊙A1,當⊙A1與軸首次相切,此時陰影部分的面積S= ;
(3)將⊙A向左平移 個單位長度與坐標軸有三個公共點.
【答案】(1)3;(2)6;(3)3,,,7.
【解析】
(1)根據直角坐標系與相切的性質即可得到平移的距離;
(2)根據直線和圓相切的位置關系與數量之間的聯系,得到A點坐標,再跟平移的性質即可求出陰影部分面積;
(3)由⊙A已經與x軸交于兩點,故分圓與y軸相切與或圓過原點兩種情況進行求解即可.
將⊙A向下平移3個單位長度與軸相切,
故填:3.
(2)根據直線和圓相切的位置關系與數量之間的聯系,得點A′的坐標是(2,1);
則移動的距離是52=3;
根據平移變換的性質,則陰影部分的面積為3×2=6
故填:6;
(3)∵⊙A已經與x軸交于兩點,
∴①圓與y軸相切
由圓心A的坐標為(5,1),2個單位長度為半徑
故向左平移3或7個單位長度可與y軸相切;
②圓過原點時,如圖⊙A2,作A2D⊥x軸于D點,連接A2O,
故OD=
此向左平移5-個單位長度,
同理可得平移至⊙A3時,平移距離為
綜上故填:3,,,7.
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣3,0和(﹣2,0)之間,其部分圖象如圖,則下列結論:①2a﹣b=0:②4ac﹣b2<0:③點(x1,y1),(x2,y2)在拋物線上若x1<x2,則y1<y2;④a+b+c<0.正確結論的個數是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線 與軸的兩個交點間的距離為2.
(1)若此拋物線的對稱軸為直線 ,請判斷點(3,3)是否在此拋物線上?
(2)若此拋物線的頂點為(S,t),請證明;
(3)當時,求的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(定義)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設∠A=x°,∠B=y°,則y與x之間的關系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.
(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數量關系;
(2)若將△OCD繞O旋轉到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關系,并證明你的結論;
(3)若將△OCD由圖(1)的位置繞O順時針旋轉角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網購”給我們的生活帶來了很多便利,初二數學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.
(1)根據圖中信息求出m= ,n= ;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)根據抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?
(4)已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”D同學最認可“網購”從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD交于點O,若增加一個條件,使ABCD成為菱形,下列給出的條件不正確的是( 。
A.AB=ADB.AC⊥BDC.AC=BDD.AD=CD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利500元,為了盡快減少庫存,商場決定采取適當的降價措施.經調查發(fā)現,每件商品每降價10元,商場每天可多售出2件.設每件商品降價x元(x是10的整數倍),據此信息,請回答:
(1)商場日銷量增加 件,每件商品盈利 元;(用含x的代數式表示).
(2)在上述條件不變且銷售正常的情況下,每件商品降價多少元時,商場日盈利可達到21000元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com