【題目】為獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,某校準(zhǔn)備購買一批文具袋和圓規(guī)作為獎(jiǎng)品,已知購買1個(gè)文具袋和2個(gè)圓規(guī)需21元,購買2個(gè)文具袋和3個(gè)圓規(guī)需39元。

1)求文具袋和圓規(guī)的單價(jià)。

2)學(xué)校準(zhǔn)備購買文具袋20個(gè),圓規(guī)若干,文具店給出兩種優(yōu)惠方案:

方案一:購買一個(gè)文具袋還送1個(gè)圓規(guī)。

方案二:購買圓規(guī)10個(gè)以上時(shí),超出10個(gè)的部分按原價(jià)的八折優(yōu)惠,文具袋不打折.

①設(shè)購買面規(guī)m個(gè),則選擇方案一的總費(fèi)用為______,選擇方案二的總費(fèi)用為______.

②若學(xué)校購買圓規(guī)100個(gè),則選擇哪種方案更合算?請說明理由.

【答案】1)文具袋的單價(jià)為15元,圓規(guī)單價(jià)為3;2)①方案一總費(fèi)用為,

方案二總費(fèi)用為元;②方案一更合算.

【解析】

1)設(shè)文具袋的單價(jià)為x/個(gè),圓規(guī)的單價(jià)為y/個(gè),根據(jù)購買1個(gè)文具袋和2個(gè)圓規(guī)需21元;購買2個(gè)文具袋和3個(gè)圓規(guī)需39,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
2)根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合兩種優(yōu)惠方案,設(shè)購買面規(guī)m個(gè),分別求出選擇方案一和選擇方案二所需費(fèi)用,然后代入m=100計(jì)算比較后即可得出結(jié)論.

1)設(shè)文具袋的單價(jià)為x元,圓規(guī)單價(jià)為y元。

由題意得解得

答:文具袋的單價(jià)為15元,圓規(guī)單價(jià)為3元。

2設(shè)圓規(guī)m個(gè),則方案一總費(fèi)用為:

方案二總費(fèi)用

故答案為:元;

買圓規(guī)100個(gè)時(shí),方案一總費(fèi)用:元,

方案二總費(fèi)用:元,

方案一更合算。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課外小組為了解同學(xué)們對學(xué)校陽光跑操活動(dòng)的喜歡程度,抽取部分學(xué)生進(jìn)行調(diào)查.被調(diào)查的每個(gè)學(xué)生按A(非常喜歡)、B(比較喜歡)、C(一般)、D(不喜歡)四個(gè)等級對活動(dòng)評價(jià).1和圖2是該小組采集數(shù)據(jù)后繪制的兩幅統(tǒng)計(jì)圖.經(jīng)確認(rèn)扇形統(tǒng)計(jì)圖是正確的,而條形統(tǒng)計(jì)圖尚有一處錯(cuò)誤且并不完整.請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)此次調(diào)查的學(xué)生人數(shù)為___;

(2)條形統(tǒng)計(jì)圖中存在錯(cuò)誤的是___(A. B.C中的一個(gè)),并在圖中加以改正;

(3)在圖2中補(bǔ)畫條形統(tǒng)計(jì)圖中不完整的部分;

(4)如果該校有600名學(xué)生,那么對此活動(dòng)非常喜歡比較喜歡的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2,1)、B(1,-2).

(1)以原點(diǎn)O為位似中心,y軸的右側(cè)畫出OAB的一個(gè)位似△OA1B1使它與△OAB的相似比為2:1,并分別寫出點(diǎn)A、B的對應(yīng)點(diǎn)A1、B1的坐標(biāo)

(2)畫出將OAB向左平移2個(gè)單位,再向上平移1個(gè)單位后的O2A2B2 ,并寫出點(diǎn)A、B的對應(yīng)點(diǎn)A2、B2的坐標(biāo)

(3)判斷△OA1B1與△O2A2B2 ,能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形,若是請?jiān)趫D中標(biāo)出位似中心M,并寫出點(diǎn)M的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交ABD,延長 AO⊙OE,連接CD,CE,若CE⊙O的切線,解答下列問題:

1)求證:CD⊙O的切線;

2)若平行四邊形OABC的兩邊長是方程的兩根,求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)EF分別在直線AB、CD上,點(diǎn)G、H在兩直線之間,線段EFGH相交于點(diǎn)O,且有∠AEF+∠CFE180°,∠AEF﹣∠1=∠2,則在圖中相等的角共有(  )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,EAB上一點(diǎn),線段DE與菱形對角線AC交于點(diǎn)F,點(diǎn)OAC的中點(diǎn),EO的延長線交邊DC于點(diǎn)G

1)求證:∠AED=∠FBC;

2)求證:四邊形DEBG是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購買、兩種型號的污水處理設(shè)備共10臺(tái),用于同時(shí)治理不同成分的污水,若購買6臺(tái),4臺(tái)需112萬,購買4臺(tái),6臺(tái)則需108萬元.

1)求出型、型污水處理設(shè)備的單價(jià);

2)經(jīng)了解,一臺(tái)型設(shè)備每月可處理污水220噸,一臺(tái)型設(shè)備每月可處理污水190噸,如果該企業(yè)計(jì)劃用不超過106萬元的資金購買這兩種設(shè)備,而且使這兩種設(shè)備每月的污水處理量不低于2005噸,請通過計(jì)算說明這種方案是否可行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何探究題

(1)發(fā)現(xiàn):在平面內(nèi),若BCaACb,其中ab

當(dāng)點(diǎn)A在線段BC上時(shí)(如圖1),線段AB的長取得最小值,最小值為   ;

當(dāng)點(diǎn)A在線段BC延長線上時(shí)(如圖2),線段AB的長取得最大值,最大值為   

(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),如圖3,分別以AB、AC為邊,作等邊△ABD和等邊△ACE,連接CD、BE

證明:CDBE;

BC3AC1,則線段CD長度的最大值為   

(3)拓展:如圖4,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線AB外一動(dòng)點(diǎn),且PA2,PMPB,∠BPM90°.請直接寫出線段AM長的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案