【題目】如圖,一次函數(shù)與二次函數(shù)的圖象交于、兩點.

利用圖中條件,求兩個函數(shù)的解析式;

根據(jù)圖象寫出使的取值范圍.

【答案】(1)一次函數(shù),二次函數(shù);; 根據(jù)圖象可知:當(dāng)時,

【解析】

1)把B坐標(biāo)代入二次函數(shù)解析式即可求得二次函數(shù)解析式A橫坐標(biāo)代入二次函數(shù)解析式即可求得點A坐標(biāo);AB兩點坐標(biāo)代入一次函數(shù)解析式即可求得一次函數(shù)的解析式;

2)應(yīng)從交點看一次函數(shù)的值大于二次函數(shù)的值時x的取值

1)由圖象可知B2,4)在二次函數(shù)y2=ax24=a×22,a=1,則二次函數(shù)y2=x2,A(﹣1n)在二次函數(shù)y2=x2,n=(﹣12,n=1,A(﹣1,1),A、B兩點在一次函數(shù)y1=kx+b,解得,則一次函數(shù)y1=x+2

一次函數(shù)y1=x+2,二次函數(shù)y2=x2

2)根據(jù)圖象可知當(dāng)﹣1x2y1y2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標(biāo);

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M 達點B時,點MN同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一個小島A,它的周圍15海里內(nèi)有暗礁,今有貨船由西向東航行,開始在A島南偏西60° B處,往東航行20海里后到達該島南偏西30° C處后,貨船繼續(xù)向東航行,你認為貨船航行途中_____ 觸礁的危險.(填寫:沒有”)

參考數(shù)據(jù):sin60°=cos30°≈0.866.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力.增強保護漢字的意識,我區(qū)舉辦了“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點、,對連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等邊三角形.

1)將繞點逆時針旋轉(zhuǎn)角);得到,所在直線相交于點.

①如圖,當(dāng)時,是否全等? (填“是”或“否”), 度;

②當(dāng)旋轉(zhuǎn)到如圖所在位置時,求的度數(shù);

2)如圖,在上分別截取點,使,,連接,將繞點逆時針旋轉(zhuǎn)角(),得到所在直線相交于點,請利用圖探索的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點Ay軸的正半軸上,點Cx軸的正半軸上,反比例函數(shù)y=(k≠0)的圖象的一個分支與AB交于點D,與BC交于點E,DF⊥x軸于點F,EG⊥y軸于點G,交DF于點H.若矩形OGHF和矩形HDBE的面積分別是25,則k的值是(  )

A. 7 B. C. 2+ D. 10

查看答案和解析>>

同步練習(xí)冊答案