【題目】如圖,一次函數(shù)與二次函數(shù)的圖象交于、兩點.
利用圖中條件,求兩個函數(shù)的解析式;
根據(jù)圖象寫出使的的取值范圍.
【答案】(1)一次函數(shù),二次函數(shù);; 根據(jù)圖象可知:當(dāng)時,
【解析】
(1)把B坐標(biāo)代入二次函數(shù)解析式即可求得二次函數(shù)解析式,把A橫坐標(biāo)代入二次函數(shù)解析式即可求得點A坐標(biāo);把A,B兩點坐標(biāo)代入一次函數(shù)解析式即可求得一次函數(shù)的解析式;
(2)應(yīng)從交點看一次函數(shù)的值大于二次函數(shù)的值時x的取值.
(1)由圖象可知:B(2,4)在二次函數(shù)y2=ax2上,∴4=a×22,∴a=1,則二次函數(shù)y2=x2,又A(﹣1,n)在二次函數(shù)y2=x2上,∴n=(﹣1)2,∴n=1,則A(﹣1,1),又A、B兩點在一次函數(shù)y1=kx+b上,∴,解得:,則一次函數(shù)y1=x+2.
答:一次函數(shù)y1=x+2,二次函數(shù)y2=x2.
(2)根據(jù)圖象可知:當(dāng)﹣1<x<2時,y1>y2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一個小島A,它的周圍15海里內(nèi)有暗礁,今有貨船由西向東航行,開始在A島南偏西60° 的B處,往東航行20海里后到達該島南偏西30° 的C處后,貨船繼續(xù)向東航行,你認為貨船航行途中_____ 觸礁的危險.(填寫:“有”或“沒有”)
參考數(shù)據(jù):sin60°=cos30°≈0.866.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力.增強保護漢字的意識,我區(qū)舉辦了“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 6 |
第3組 | 35≤x<40 | 14 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點、,對連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等邊三角形.
(1)將繞點逆時針旋轉(zhuǎn)角();得到,和所在直線相交于點.
①如圖,當(dāng)時,與是否全等? (填“是”或“否”), 度;
②當(dāng)旋轉(zhuǎn)到如圖所在位置時,求的度數(shù);
(2)如圖,在和上分別截取點和,使,,連接,將繞點逆時針旋轉(zhuǎn)角(),得到,和所在直線相交于點,請利用圖探索的度數(shù),直接寫出結(jié)果,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A在y軸的正半軸上,點C在x軸的正半軸上,反比例函數(shù)y=(k≠0)的圖象的一個分支與AB交于點D,與BC交于點E,DF⊥x軸于點F,EG⊥y軸于點G,交DF于點H.若矩形OGHF和矩形HDBE的面積分別是2和5,則k的值是( 。
A. 7 B. C. 2+ D. 10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com