【題目】我們把兩邊之比為整數的三角形稱為倍比三角形.其中,這個整數比稱為倍比,第三條邊叫做該三角形的底.
(1)如圖1,△ABC是以AC為底的倍比三角形,倍比為3,若∠C=90°,AC=2,求BC的長;
(2)如圖2,△ABC中,D為BC邊上一點,BD=3,CD=1,連結AD.若AC=2,求證:△ABD是倍比三角形,并求出倍比;
(3)如圖3,菱形ABCD中,∠BAD為鈍角,P為對角線BD上一動點,過P作PH⊥CD于H、當CP+PH的值最小時,APCD恰好是以PD為底的倍比三角形,記倍比為x,=y,求y關于x的函數關系式.
科目:初中數學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點P、M.對于下列結論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(概念提出)如圖 ①,若正△DEF的三個頂點分別在正△ABC的邊AB、BC、AC上,則我們稱△DEF是正△ABC的內接正三角形.
(1)求證:△ADF≌△BED.
(問題解決)利用直尺和圓規(guī)作正三角形的內接正三角形(保留作圖痕跡,不寫作法).
(2)如圖 ②,正△ABC的邊長為a,作正△ABC的內接正△DEF,使△DEF的邊長最短,并說明理由;
(3)如圖③,作正△ABC的內接正△DEF,使FD⊥AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,弦與半徑交于點,連接、,.
(1)求證:;
(2)如圖2,過點作交于點,垂足為,連接,求證:;
(3)如圖3,在(2)的條件下,連接并延長交于點,連接、,過點作于點,交于點,連接,若,時,求線段的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發(fā)現:當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線(為常數)經過拋物線上的點及拋物線的頂點.拋物線與軸交于點,與軸的另一個交點為.
(1)求的值和點的坐標;
(2)根據圖象,寫出滿足的的取值范圍;
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.點P從點A出發(fā),以5cm/s的速度從點A運動到終點B;同時,點Q從點C出發(fā),以3cm/s的速度從點C運動到終點B,連結PQ;過點P作PD⊥AC交AC于點D,將△APD沿PD翻折得到△A′PD,以A′P和PB為鄰邊作A′PBE,A′E交射線BC于點F,交射線PQ于點G.設A′PBE與四邊形PDCQ重疊部分圖形的面積為Scm2,點P的運動時間為ts.
(1)當t為何值時,點A′與點C重合;
(2)用含t的代數式表示QF的長;
(3)求S與t的函數關系式;
(4)請直接寫出當射線PQ將A′PBE分成的兩部分圖形的面積之比是1:3時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.
(1)求證:△ABC∽△FCD;
(2)過點A作AM⊥BC于點M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com