【題目】已知等腰△ABC的周長(zhǎng)為8,腰長(zhǎng)為x,底邊長(zhǎng)為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并求自變量x的取值范圍;
(2)在平面直角坐標(biāo)系中,畫出y與x之間的函數(shù)圖像;
(3)若△ABC的三邊長(zhǎng)均為整數(shù),求三邊的長(zhǎng).
【答案】(1)y=-2x+8,2<x<4;
(2)畫圖見解析;
(3)△ABC的三邊長(zhǎng)為3、3、2.
【解析】試題分析:(1)根據(jù)等腰三角形的周長(zhǎng)公式求出y與x的函數(shù)關(guān)系式;求自變量的取值,應(yīng)從兩腰長(zhǎng)>底邊長(zhǎng)>0,兩腰長(zhǎng)之和大于底邊長(zhǎng),列出不等式組,解不等式組即可得x的取值范圍;(2)根據(jù)(1)中所求畫出圖象即可;(3)根據(jù)x的取值范圍和x取整數(shù),確定x的值,即可求得y的值,從而求得三角形三邊的長(zhǎng).
試題解析:
(1)y=-2x+8;
∵解得2<x<4,
(2)如圖所示:
(3)∵x為正整數(shù),2<x<4.
∴x=3,y=2,
∴ △ABC的三邊長(zhǎng)為3,3,2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠ABC,∠ACB的平分線相交于F點(diǎn),過(guò)點(diǎn)F作DE∥BC,交AB于點(diǎn)D,交AC于點(diǎn)E.
(1)請(qǐng)你寫出圖中所有的等腰三角形;
(2)請(qǐng)寫出BD,CE,DE之間的數(shù)量關(guān)系;
(3)并對(duì)第(2)問(wèn)中BD,CE,DE之間的數(shù)量關(guān)系給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】()如圖①,在中,,點(diǎn)在上,且,求的度數(shù).
()如圖②,點(diǎn),在射線上,點(diǎn),在射線上,且.
①若,求的度數(shù).
②若以為圓心,為半徑作弧,與射線上沒有交點(diǎn)(除點(diǎn)外),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對(duì)外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為120米2.
若購(gòu)買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)10%,沒有其他贈(zèng)送.
(1)請(qǐng)寫出售價(jià)y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購(gòu)買第十六層的一套樓房,若他一次性付清購(gòu)房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在8×8的網(wǎng)絡(luò)中,△ABC是格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),若點(diǎn)A坐標(biāo)為(-1,3),按要求回答下列問(wèn)題:
(1)建立符合條件的平面直角坐標(biāo)系,并寫出點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)將△ABC先向下平移2個(gè)單位長(zhǎng)度,在向右平移3個(gè)單位長(zhǎng)度,得到△DEF,請(qǐng)?jiān)趫D中畫出△DEF,并求出線段AC在平移過(guò)程中掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,是真命題的是( )
A. 相等的角是對(duì)頂角
B. 若直線a與b互相垂直,記作a∥b
C. 內(nèi)錯(cuò)角相等
D. 在同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說(shuō)明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com