【題目】(1)發(fā)現(xiàn):如圖1,點A為線段BC外一動點,且BC=a,AB=b.
填空:當點A位于 時,線段AC的長取得最大值,且最大值為 (用含a、b的式子表示);
(2)應用:點A為線段BC外一動點,且BC=4,AB=2,如圖2,分別以AB、AC為邊,作等邊三角形ABD和等邊△ACE,連接CD、BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值;
③直接寫出△DBC面積的最大值.
【答案】(1)CB的延長線上,a+b;(2)①CD=BE,理由見解析;②6;③4.
【解析】
(1)根據(jù)點A位于CB的延長線上時,線段AC的長取得最大值,即可得到結(jié)論;
(2)①根據(jù)等邊三角形的性質(zhì)得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根據(jù)全等三角形的性質(zhì)得到CD=BE;
②由于線段BE長的最大值=線段CD的最大值,根據(jù)(1)中的結(jié)論即可得到結(jié)果;
③作DP⊥CB,交CB延長線于點P,當DB⊥BC時,DP取得最大值,最大值為2,再根據(jù)三角形的面積公式求解可得.
(1)∵點A為線段BC外一動點,且BC=a,AB=b,
∴當點A位于CB的延長線上時,線段AC的長取得最大值,且最大值為BC+AB=a+b,
故答案為:CB的延長線上,a+b;
(2)①CD=BE,
理由:∵△ABD與△ACE是等邊三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD與△EAB中,
∵
∴△CAD≌△EAB(SAS),
∴CD=BE;
②∵線段BE長的最大值=線段CD的最大值,
由(1)知,當線段CD的長取得最大值時,點D在CB的延長線上,
∴最大值為BD+BC=AB+BC=6;
③如圖,過點D作DP⊥CB,交CB延長線于點P,
在Rt△BDP中,DP<DB,
當DB⊥BC時,DP取得最大值,最大值為2,
∴△DBC面積的最大值為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=7,EF=3,則BC長為( )
A.9
B.10
C.11
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,折線ABCDE描述了一輛汽車在某一直線上行駛過程中,汽車離出發(fā)地的距離y(km)和行駛時間x(h)之間的函數(shù)關系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了120km;②汽車在行駛途中停留了0.5h;③汽車在整個行駛過程中的平均速度為km/h;④汽車自出發(fā)后3h~4.5h之間行駛的速度在逐漸減小.其中正確的說法是 .(填上所有正確的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在Rt△ABC中,AB=3,AC=4,BC=5,若直線EF垂直平分BC,請你利用尺規(guī)畫出直線EF;
(2)若點P在(1)中BC的垂直平分線EF上,請直接寫出PA+PB的最小值,回答PA+PB取最小值時點P的位置并在圖中標出來;
解:PA+PB的最小值為 ,PA+PB取最小值時點P的位置是 ;
(3)如圖2,點M,N分別在直線AB兩側(cè),在直線AB上找一點Q,使得∠MQB=∠NQB.要求畫圖,并簡要敘述確定點Q位置的步驟(無需尺規(guī)作圖,保留畫圖痕跡,無需證明)
解:確定點Q位置的簡要步驟: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2)、B(3,1)、C(﹣2,﹣1)
(1)在圖中作出△ABC關于y軸對稱的△A1B1C1;
(2)寫出A1、B1、C1的坐標;
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題:探索發(fā)現(xiàn)
(1)自主閱讀:在三角形的學習過程,我們知道三角形一邊上的中線將三角形分成了兩個面積相等三角形,原因是兩個三角形的底邊和底邊上的高都相等,在此基礎上我們可以繼續(xù)研究:如圖1,AD∥BC,連接AB,AC,BD,CD,則S△ABC=S△BCD .
證明:分別過點A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因為S△ABC= ×BC×AF,S△BCD= .
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣
(2)問題解決:如圖2,四邊形ABCD中,AB∥DC,連接AC,過點B作BE∥AC,交DC延長線于點E,連接點A和DE的中點P,請你運用上面的結(jié)論證明:SABCD=S△APD
(3)應用拓展:
如圖3,按此方式將大小不同的兩個正方形放在一起,連接AF,CF,若大正方形的面積是80cm2 , 則圖中陰影三角形的面積是cm2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com