【題目】如圖1,點是數(shù)軸上:從左到右排列的三個點,分別對應(yīng)的數(shù)為某同學(xué)將刻度尺如圖2放置.使刻度尺上的數(shù)字對齊數(shù)軸上的點,發(fā)現(xiàn)點對齊刻度,點對齊刻度.
(1)在圖1的數(shù)軸上, 個單位長度;數(shù)軸上的一個單位長度對應(yīng)刻度尺上的 .
(2)求數(shù)軸上點所對應(yīng)的數(shù);
(3)在圖1的數(shù)軸上,點是線段上一點,滿足求點所表示的數(shù).
【答案】(1)9,0.6;(2)-2;(3).
【解析】
(1)根據(jù)兩點間的距離解答即可;
(2)根據(jù)點對齊刻度,數(shù)軸上的一個單位長度對應(yīng)刻度尺上的求解即可;
(3)設(shè)對應(yīng)的數(shù)是,則,,根據(jù),得,求解即可.
解:(1)∵點對應(yīng)的數(shù)為,
∴在數(shù)軸上是9個單位長度;
又∵數(shù)字對齊數(shù)軸上的點,點對齊刻度,
∴數(shù)軸上的一個單位長度對應(yīng)刻度尺上的;
(2)∵點對齊刻度,數(shù)軸上的一個單位長度對應(yīng)刻度尺上的,
∴;
(3)設(shè)對應(yīng)的數(shù)是,
∴,,
當(dāng)時,
∴
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P(m,n)在一次函數(shù)y=﹣x的圖象上,將點P繞點A(﹣,﹣)逆時針旋轉(zhuǎn)45°,旋轉(zhuǎn)后的對應(yīng)點為P′.
(1)當(dāng)m=0時,求點P′的坐標(biāo);
(2)試說明:不論m為何值,點P′的縱坐標(biāo)始終不變;
(3)如圖2,過點P作x軸的垂線交直線AP′于點B,若直線PB與二次函數(shù)y=﹣x2﹣x+2的圖象交于點Q,當(dāng)m>0時,試判斷點B是否一定在點Q的上方,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是弦與弧所圍成的圖形的內(nèi)部的一個定點,P是弦上一動點,連接并延長交弧于點Q,連接.
已知,設(shè)A,P兩點間的距離為,P,Q兩點間距離為,兩點間距離為.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)隨自變量x的變化而變化的規(guī)律進(jìn)行了研究.下面是小明的探究過程,請補充完整.
(1)按照如表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了與x的幾組對應(yīng)值,補全下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
5.24 | 4.24 | 3.24 | 1.54 | 1.79 | 3.47 | ||
1.31 | 1.34 | 1.42 | 1.54 | 1.80 | 2.45 | 3.47 |
(2)在同一平面直角坐標(biāo)系中,描出表中各組數(shù)值對應(yīng)的點和并畫出函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)為等腰三角形時,的長度約_________.(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為48°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=,且D、M、E、C、N、B、A在同一平面內(nèi),M、E、C、N在同一條直線上.
(1)求BN的長度;
(2)求條幅AB的長度(結(jié)果保留根號).
(參考數(shù)據(jù):sin48°≈,tan48°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.
(1)求證:BF=CD;
(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與鈾交于兩點(點作點的左側(cè)),與軸交于點且,點為拋物線的對稱軸右側(cè)圖象上的一點.
(1)a的值為_ ,拋物線的頂點坐標(biāo)為_ ;
(2)設(shè)拋物線在點和點之間部分(含點和點)的最高點與最低點的縱坐標(biāo)之差為,求關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍;
(3)當(dāng)點的坐標(biāo)滿足:時,連接,若為線段上一點,且分四邊形的面積為相等兩部分,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師把微信運動里“好友計步榜”排名前20的好友一天行走的步數(shù)做了整理,繪制了如下不完整的統(tǒng)計圖表:
組別 | 步數(shù)分組 | 頻率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合計 | 1 |
根據(jù)信息解答下列問題:
(1)填空:m= ,n= ;并補全條形統(tǒng)計圖;
(2)這20名朋友一天行走步數(shù)的中位數(shù)落在 組;(填組別)
(3)張老師準(zhǔn)備隨機給排名前4名的甲、乙、丙、丁中的兩位點贊,請求出甲、乙被同時點贊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在數(shù)學(xué)實踐活動課中測景路燈的高度,如圖,已知她的目高AB為1.5米,街為站在A處看路燈頂端P的仰角為30°.再往前走2米站在C處,看路燈頂端P的仰角為45°,求路燈頂端P到地面的距離(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com