【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)如圖1,當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說理由;若不變,求出它的度數.
(3)如圖2,若點P、Q在分別運動到點B和點C后,繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC= 度.(直接填寫度數)
【答案】(1)見解析;(2)不變,60°;(3)120°.
【解析】
試題分析:(1)根據等邊三角形的性質,利用SAS證明△ABQ≌△CAP;
(2)由△ABQ≌△CAP根據全等三角形的性質可得∠BAQ=∠ACP,從而得到∠QMC=60°;
(3)由△ABQ≌△CAP根據全等三角形的性質可得∠BAQ=∠ACP,從而得到∠QMC=120°.
(1)證明:∵△ABC是等邊三角形
∴∠ABQ=∠CAP,AB=CA,
又∵點P、Q運動速度相同,
∴AP=BQ,
在△ABQ與△CAP中,
,
∴△ABQ≌△CAP(SAS);
(2)解:點P、Q在運動的過程中,∠QMC不變.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;
(3)解:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.
故答案為:120°.
科目:初中數學 來源: 題型:
【題目】某旅游景點門票價格規(guī)定如下:
某校七年級組織甲、乙兩個班共92人去該景點游玩,其中甲班人數多余乙班人數且甲班人數不夠90人,如果兩個班單獨購買門票,一共應付7760元.
(1)如果甲、乙兩個班聯合起來購買門票,那么比各自購買門票可以節(jié)省多少錢?
(2)甲、乙兩個班各有多少學生?
(3)如果甲班有10名學生因學校有任務不能參加這次旅游,請你作為兩個班設計出購買門票的方案,并指出最省錢的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016四川省樂山市第3題)某班開展1分鐘仰臥起坐比賽活動,5名同學的成績如下(單位:個):37、38、40、40、42.這組數據的眾數是( )
A.37 B.38 C.40 D.42
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com