【題目】如圖,8塊相同的小長(zhǎng)方形地磚拼成一個(gè)大長(zhǎng)方形,

1)每塊小長(zhǎng)方形地磚的長(zhǎng)和寬分別是多少?(要求列方程組進(jìn)行解答)

2)小明想用一塊面積為7平方米的正方形桌布,沿著邊的方向裁剪出一塊新的長(zhǎng)方形桌布,用來蓋住這塊長(zhǎng)方形木桌,你幫小明算一算,他能剪出符合要求的桌布嗎?

【答案】(1) 長(zhǎng)是1.5m,寬是0.5m.;(2)不能.

【解析】

1)設(shè)每塊小長(zhǎng)方形地磚的長(zhǎng)為xm,寬為ym,列方程組求解即可;

2)把正方形的邊長(zhǎng)與大長(zhǎng)方形的長(zhǎng)比較即可.

:1)設(shè)每塊小長(zhǎng)方形地磚的長(zhǎng)為xm,寬為ym,由題意得:

,

解得:,

∴長(zhǎng)是1.5m,寬是0.5m.

2)∵正方形的面積為7平方米,

∴正方形的邊長(zhǎng)是米,

<3,

∴他不能剪出符合要求的桌布.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖是一個(gè)4×4的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)?jiān)诰W(wǎng)格中以左上角的三角形為基本圖形,通過平移、對(duì)稱或旋轉(zhuǎn),設(shè)計(jì)兩個(gè)精美圖案,使其滿足:①既是軸對(duì)稱圖形,又能以點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn)而得到;②所作圖案用陰影標(biāo)識(shí),且陰影部分面積為4.

(2)如圖,的三個(gè)頂點(diǎn)和點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,每個(gè)小正方形的邊長(zhǎng)都為1.

①將先向右平移4個(gè)單位,再向上平移2個(gè)單位得到,請(qǐng)畫出;

②請(qǐng)畫出,使關(guān)于點(diǎn)成中心對(duì)稱;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)MCD中點(diǎn),將△MBC沿BM翻折至△MBE,若∠AME α,∠ABE β,則 α β 之間的數(shù)量關(guān)系為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享經(jīng)濟(jì)來臨,某企業(yè)決定在無錫投入共享單車(自行車)和共享電單車(電動(dòng)車)共2000輛,已知每輛共享單車成本380元,每臺(tái)共享電單車成本1500元,2輛共享單車和1輛共享電單車每周毛利31元,4輛共享單車和3輛共享電單車每周毛利81元,

1)求共享單車和共享電單車每周每輛分別可以盈利多少元?

2)為考慮投資回報(bào)率,該企業(yè)計(jì)劃投入成本不超過174萬元,每周的毛利不低于23050元,現(xiàn)要求投入的單車數(shù)量為10的倍數(shù),請(qǐng)你列舉出所有投入資金方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線EF//MN,點(diǎn)A、B分別為EF,MN上的動(dòng)點(diǎn),且ACB= aBD平分CBNEFD

1)若FDB=120°,a=90°.如圖1,求MBCEAC的度數(shù)?

2)延長(zhǎng)AC交直線MNG,這時(shí)a =80°,如圖2,GH平分AGBDB于點(diǎn)H,問GHB是否為定值,若是,請(qǐng)求值.若不是,請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B30°,邊AB的垂直平分線分別交ABBC于點(diǎn)D,E,且AE平分∠BAC

1)求∠C的度數(shù);

2)若CE1,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ADCE分別是△ABC的角平分線和中線,ADCEADCE4,則BC的長(zhǎng)等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線與⊙O,AB是⊙O的直徑,AD于點(diǎn)D

1如圖①,當(dāng)直線與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大;

2如圖②,當(dāng)直線與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案