【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BCE,F兩點,連結(jié)BE,DF

(1)求證:DOE≌△BOF

(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.

【答案】(1)證明見解析;(2)當(dāng)∠DOE=90°時,四邊形BFED為菱形,理由見解析.

【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOFASA);

2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.

試題解析:(1ABCD中,O為對角線BD的中點,

∴BO=DO,∠EDB=∠FBO

△EOD△FOB

,

∴△DOE≌△BOFASA);

2)當(dāng)∠DOE=90°時,四邊形BFDE為菱形,

理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,四邊形EBFD是平行四邊形,

∵∠EOD=90°,∴EF⊥BD四邊形BFDE為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.下表是該市民一戶一表"生活用水階梯式計費價格表的部分信息:

自來水銷售價格

污水處理價格

每戶每月用水量

單價:/

單價:/

噸及以下

超過噸但不超過噸的部分

超過噸的部分

(說明:每戶生產(chǎn)的污水量等于該戶自來水用量;②水費=自來水費用+污水處理費)

已知小王家20187月用水噸,交水費.8月份用水噸,交水費.

1)求的值;

2)如果小王家9月份上交水費元,則小王家這個月用水多少噸?

3)小王家10月份忘記了去交水費,當(dāng)他11月去交水費時發(fā)現(xiàn)兩個月一共用水50噸,其中10月份用水超過噸,一共交水費元,其中包含元滯納金,求小王家11月份用水多少噸? (滯納金:因未能按期繳納水費,逾期要繳納的罰款金額”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了估計魚塘中成品魚(個體質(zhì)量在0.5 kg及以上,下同)的總質(zhì)量,先從魚塘中捕撈50條成品魚,稱得它們的質(zhì)量如下表:

然后做上記號再放回魚塘中,過幾天又捕撈了100條成品魚,發(fā)現(xiàn)其中2條帶有記號.

(1)請根據(jù)表中數(shù)據(jù)補全下面的直方圖(各組中數(shù)據(jù)包括左端點不包括右端點);

(2)根據(jù)圖中數(shù)據(jù)分組,估計從魚塘中隨機(jī)捕一條成品魚,其質(zhì)量落在哪一組的可能性最大?

(3)根據(jù)圖中數(shù)據(jù)分組,估計魚塘里質(zhì)量中等的成品魚,其質(zhì)量落在哪一組內(nèi)?

(4)請你用適當(dāng)?shù)姆椒ü烙嬼~塘中成品魚的總質(zhì)量(精確到1 kg).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4ab=0;②c0;③﹣3a+c0;④4a2bat2+btt為實數(shù));⑤點(,),(,),(,)是該拋物線上的點,則,正確的個數(shù)有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BCAB的夾角分別為45°68°,若點C到地面的距離CD28cm,坐墊中軸E處與點B的距離BE4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是線段上任一點,,兩點分別從同時向點運動,且點的運動速度為,點的運動速度為,運動的時間為.

1)若,

①運動后,求的長;

②當(dāng)在線段上運動時,試說明;

2)如果時,,試探索的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】世界因愛而美好,在今年我校舉行的獻(xiàn)愛心捐款活動中,八年級二班40名學(xué)生積極參加捐款活動,班長將捐款情況進(jìn)行了統(tǒng)計,并繪制成了統(tǒng)計圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)、中位數(shù)、平均數(shù)分別是( )

A. 20、20、20 B. 30、30、31

C. 20、30、31 D. 30、30、30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線AB、CD相交于點OEOCDO

1)若∠AOC=36°,求∠BOE的度數(shù);

2)若∠BOD:∠BOC=15,求∠AOE的度數(shù);

3)在(2)的條件下,請你過點O畫直線MNAB,并在直線MN上取一點F(點FO不重合),然后直接寫出∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角板,如圖放置在桌面上,讓三角板OAB30°角頂點與三角板OCD的直角頂點重合,邊OAOC重合,固定三角板OCD不動,把三角板OAB繞著頂點O順時針轉(zhuǎn)動,直到邊OB落在桌面上為止.

1)如下圖,當(dāng)三角板OAB轉(zhuǎn)動了20°時,求∠BOD的度數(shù);

2)在轉(zhuǎn)動過程中,若∠BOD=20°,在下面兩圖中分別畫出∠AOB的位置,并求出轉(zhuǎn)動了多少度?

3)在轉(zhuǎn)動過程中,∠AOC∠BOD有怎樣的等量關(guān)系,請你給出相等關(guān)系式,并說明理由;

查看答案和解析>>

同步練習(xí)冊答案