【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

2)如圖2,∠BEF與∠EFD的角平分線交于點P,EPCD交于點G,點HMN上一點,且GHEG,求證:PFGH;

3)如圖3,在(2)的條件下,連接PHKGH上一點使∠PHK=HPK,作PQ平分∠EPK,求∠HPQ的度數(shù).

【答案】1ABCD,理由見解析;(2)證明見解析;(345°.

【解析】

1)利用對頂角相等、等量代換可以推知同旁內(nèi)角∠AEF、∠CFE互補,所以易證ABCD;

2)利用(1)中平行線的性質(zhì)推知∠BEF+EFD=180°;然后根據(jù)角平分線的性質(zhì)、三角形內(nèi)角和定理證得∠EPF=90°,即EGPF,故結(jié)合已知條件GHEG,易證PFGH;

3)利用三角形外角定理、三角形內(nèi)角和定理求得;然后由鄰補角的定義、角平分線的定義推知;最后根據(jù)圖形中的角與角間的和差關(guān)系求得∠HPQ=45°

1ABCD,

理由如下:

∵∠1與∠2互補,

∴∠1+2=180°,

又∵∠1=AEF,∠2=CFE

∴∠AEF+CFE=180°,

ABCD;

2)由(1)知,ABCD,∴∠BEF+EFD=180°.

又∵∠BEF與∠EFD的角平分線交于點P

∴∠EPF=90°,即EGPF

GHEG

PFGH;

3)∵∠PHK=HPK,

∴∠PKG=2HPK

又∵GHEG,

∴∠KPG=90°﹣∠PKG=90°﹣2HPK,

∴∠EPK=180°﹣∠KPG=90°+2HPK

PQ平分∠EPK,

∴∠HPQ=QPK﹣∠HPK=45°.

答:∠HPQ的度數(shù)為45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E是DC的中點,連接AE,并延長交BC的延長線于點F.

(1)求證:△ADE和△CEF的面積相等;
(2)若AB=2AD,試說明AF恰好是∠BAD的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=150°,AC=4,tanB=

(1)求BC的長;
(2)利用此圖形求tan15°的值(精確到0.1,參考數(shù)據(jù): =1.4, =1.7, =2.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B,C在反比例函數(shù)y= (x>0)的圖象上,若△OAB的面積等于6,則k的值為( )

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定在4月7日開展“世界無煙日”宣傳活動,活動有A社區(qū)板報、B集會演講、C喇叭廣播、D發(fā)宣傳畫四種宣傳方式.學(xué)校圍繞“你最喜歡的宣傳方式是什么?”在全校學(xué)生中進行隨機抽樣調(diào)查(四個選項中必選且只選一項),根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了兩種不完整的統(tǒng)計圖表:

選項

方式

百分比

A

社區(qū)板報

35%

B

集會演講

m

C

喇叭廣播

25%

D

發(fā)宣傳畫

10%

請結(jié)合統(tǒng)計圖表,回答下列問題:

(1)本次抽查的學(xué)生共人,m= , 并將條形統(tǒng)計圖補充完整;
(2)若該校學(xué)生有1500人,請你估計該校喜歡“集會演講”這項宣傳方式的學(xué)生約有多少人?
(3)學(xué)校采用抽簽方式讓每班在A、B、C、D四種宣傳方式在隨機抽取兩種進行展示,請用樹狀圖或列表法求某班所抽到的兩種方式恰好是“集會演講”和“喇叭廣播”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,四邊形中,于點.點邊上一點,以為邊作平行四邊形,則最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD折疊,使點C與A點重合,折痕為EF.

(1)判斷四邊形AFCE的形狀,并說明理由.
(2)若AB=4,BC=8,求折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,△ABO的頂點坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EFCD關(guān)于y軸對稱,線段CDNM關(guān)于直線l對稱.

(1)求點N、M的坐標(biāo)(用含m、a的代數(shù)式表示);

(2)△ABO△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請你說出一個平移方案(平移的單位數(shù)用m、a表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案