如圖:在Rt△ACB中,∠B=90°,AB=6m,CB=8m,點P、Q同時由A、C兩點分別沿AB、CB方向向點B勻速移動,它們的速度都是1m/s,設(shè)x秒后△PBQ的面積為Rt△ACB面積的一半.則方程(一般形式)為:
x2-14x+24=0
x2-14x+24=0
分析:根據(jù)題意∠B=90°,可以得出△ABC面積為
1
2
×AC×BC,△PCQ的面積為
1
2
×PC×CQ,設(shè)出t秒后滿足要求,則根據(jù)△PCQ的面積是△ABC面積的一半列出等量關(guān)系列出方程即可.
解答:解:設(shè)x秒后△PBQ的面積是△ABC面積的一半,
則可得此時PC=AC-AP=6-x,CQ=BC-BQ=8-x,
∴△ABC面積為
1
2
×AC×BC=
1
2
×6×8=24,△PCQ的面積為
1
2
×PC×CQ=
1
2
×(6-x)×(8-x),
∵△PCQ的面積是△ABC面積的一半,
1
2
×(6-x)×(8-x)=
1
2
×24,
整理得:x2-14x+24=0,
故答案為:x2-14x+24=0
點評:本題考查了一元二次方程的應(yīng)用,找到等量關(guān)系式,列出方程求解即可.要注意結(jié)合圖形找到等量關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2).根據(jù)以上信息,解答下列問題:
(1)當t為何值時,以A、P、Q為頂點的三角形與△ABC相似?
(2)設(shè)四邊形PQCB的面積為y(cm2),直接寫出y與t之間的函數(shù)關(guān)系式;
(3)在點P、點Q的移動過程中,如果將△APQ沿其一邊所在直線翻折,翻折后的三角形與△APQ組成一個四邊形,那么是否存在某一時刻t,使組成的四邊形為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在Rt△ACB中,∠C=90°,AC=8,BC=6,CD是斜邊AB上的高.若點P在線段DB上,連接CP,sin∠APC=
2425
.求CP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ACB中,∠C=90゜,點O為AB的中點,OE⊥OF交AC于E點、交BC于F點,EM⊥AB,F(xiàn)N⊥AB,垂足分別為M、N,
求證:AM=ON.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于點E,過E作ED⊥AB于D點,當∠A=
30°
30°
 時,ED恰為AB的中垂線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于
40°
40°

查看答案和解析>>

同步練習冊答案