【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.
【答案】(1)證明見解析(2);(3)
【解析】
(1)連接AD、OD,根據(jù)圓周角定理得∠ADB=90°,由AB=AC,根據(jù)等腰三角形的直線得DC=DB,所以OD為△BAC的中位線,則OD∥AC,然后利用DE⊥AC得到OD⊥DE,
這樣根據(jù)切線的判定定理即可得到結(jié)論;
(2)易得四邊形OAED為正方形,然后根據(jù)正切的定義計算tan∠ABE的值;
(3)由AB是⊙O的直徑得∠AFB=90°,再根據(jù)等角的余角相等得∠EAP=∠ABF,則tan∠EAP=tan∠ABE=,在Rt△EAP中,利用正切的定義可計算出EP,然后利用勾股定理可計算出AP.
(1)證明:連接AD、OD,如圖,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AB=AC,
∴AD垂直平分BC,即DC=DB,
∴OD為△BAC的中位線,
∴OD∥AC,
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線;
(2)解:∵OD⊥DE,DE⊥AC,
∴四邊形OAED為矩形,
而OD=OA,
∴四邊形OAED為正方形,
∴AE=AO,
∴tan∠ABE=;
(3)解:∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠ABF+∠FAB=90°,
而∠EAP+∠FAB=90°,
∴∠EAP=∠ABF,
∴tan∠EAP=tan∠ABE=,
在Rt△EAP中,AE=2,
∵tan∠EAP=,
∴EP=1,
∴AP==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟南某中學(xué)在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C分別在軸的負半軸、軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉(zhuǎn),使點B落在軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x<0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tan∠DOE=,,則BN的長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=2,∠BAC=45°.將△ABC繞點A逆時針旋轉(zhuǎn)α度(0<α<180)得到△ADE,B,C兩點的對應(yīng)點分別為點D,E,BD,CE所在直線交于點F.
(1)當(dāng)△ABC旋轉(zhuǎn)到圖1位置時,∠CAD= (用α的代數(shù)式表示),∠BFC的度數(shù)為 °;
(2)當(dāng)α=45時,在圖2中畫出△ADE,并求此時點A到直線BE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保證車輛行駛安全,現(xiàn)在公路旁設(shè)立一檢測點A觀測行駛的汽車是否超速.如圖,檢測點A到公路的距離是24米,在公路上取兩點B、C,使得∠ACB=30°,∠ABC=120°.
(1)求BC的長(結(jié)果保留根號);
(2)已知該路段限速為45千米/小時,若測得某汽車從B到C用時2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,點E在AD上,EC平分∠BED.
(1)試判斷△BEC是否為等腰三角形,并說明理由.
(2)若AB=1,∠ABE=45°,求BC的長.
(3)在原圖中畫△FCE,使它與△BEC關(guān)于CE的中點O成中心對稱,此時四邊形BCFE是什么特殊平行四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)y=的圖象在第一象限上的動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊△ABC使點C落在第二象限,且邊BC交x軸于點D,若△ACD與△ABD的面積之比為1:2,則點C的坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時,不等式x+b>的解集;
(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com