【題目】已知一次函數(shù)的圖象經(jīng)過點A(﹣1,3)和點(2,﹣3),
(1)求一次函數(shù)的解析式;
(2)判斷點C(﹣2,5)是否在該函數(shù)圖象上.
【答案】(1) y=﹣2x+1 ;(2) 點C(﹣2,5)在該函數(shù)圖象上.
【解析】
(1)根據(jù)一次函數(shù)圖象過A(﹣1,3)和點B(2,﹣3),然后將其代入一次函數(shù)的解析式,利用待定系數(shù)法求該函數(shù)的解析式;
(2)把)把x=﹣2代入y=﹣2x+1,得出y的值,和C的縱坐標(biāo)進行比較即可判斷.
解:(1)設(shè)直線AB的函數(shù) 解析式為y=kx+b(k、b為常數(shù)且k≠0)
∵一次函數(shù)的圖象經(jīng)過點A(﹣1,3)和點(2,﹣3),
∴
解得.
∴直線AB的函數(shù)解析式為y=﹣2x+1.
(2)把x=﹣2代入y=﹣2x+1,得y=﹣2×(﹣2)+1=5,
所以點C(﹣2,5)在該函數(shù)圖象上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點E,∠ABC、∠BCD的角平分線交于點F.
(1)若∠F=70°,則∠ABC+∠BCD= ______ °;∠E= ______ °;
(2)探索∠E與∠F有怎樣的數(shù)量關(guān)系,并說明理由;
(3)給四邊形ABCD添加一個條件,使得∠E=∠F,所添加的條件為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=4,點M是OA的中點,過點M的直線與⊙O交于C,D兩點.若∠CMA=45°,則弦CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究表明,溫度對生豬詞養(yǎng)有一定的影響.下圖是某生豬飼養(yǎng)場查閱的下周天氣預(yù)報情況,根據(jù)圖中信息回答下列問題:
(1)周二的最高氣溫與最低氣溫分別是多少?
(2)圖中點A表示的實際意義是什么?
(3)當(dāng)一天內(nèi)的溫差超過12C時,生豬可能出現(xiàn)生理異常.為了預(yù)防生豬生理異常,養(yǎng)殖場需要在哪幾天進行人工調(diào)節(jié)溫度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細閱讀下面例題,解答問題
例題:已知二次三項式x2﹣4x+m有一個因式是(x+3),求另一個因式以及m的值.
解:設(shè)另一個因式為(x+n),得x2﹣4x+m=(x+3)(x+n),
則x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一個因式為(x﹣7),m的值為﹣21.
問題:
(1)若二次三項式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;
(2)若二次三項式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;
(3)仿照以上方法解答下面問題:若二次三項式2x2+3x﹣k有一個因式是(2x﹣5),求另一個因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線 分別與x軸、y軸交于點B、C,且與直線 交于點A.
(1)分別求出點A、B、C的坐標(biāo);
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的函數(shù)表達式;
(3)在(2)的條件下,設(shè)P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O(shè)、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,點O是△ABC的中心,∠FOG=120°,繞點O旋轉(zhuǎn)∠FOG,分別交線段AB,BC于D,E兩點,連接DE,給出下列三個結(jié)論①OD=OE; ②S△ODE=S△BDE;③四邊形ODBE的面積始終等于.述結(jié)論中正確的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com