【題目】如圖,等邊三角形ABC的邊長為4,O△ABC的中心,∠FOG=120°,繞點O旋轉∠FOG,分別交線段AB,BCD,E兩點,連接DE,給出下列三個結論①OD=OE; SODE=SBDE;③四邊形ODBE的面積始終等于.述結論中正確的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

【答案】B

【解析】

先連接OA,OB,OC,然后根據(jù)三角形的中心的性質和三角形全等判斷三個結論的正確性.

連接OA,OB,OC,

因為點OABC的中心,

所以∠AOB=BOC=120°,OA=OB=OC

所以∠BOC=FOG=120°,ABO=BCO=30°,

所以∠BOD=COE,

所以BOD≌△COE,

所以OD=OE,結論①正確;

如當EBC的中點時,SODE<SBDE,所以②錯誤;因為BOD≌△COE,所以SBOD=SCOE,所以S四邊形ODBE=SBOC=SABC=,結論③正確.

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點0是坐標原點.邊長為6的正方形OABC的頂點A,C分別在x軸和y軸的正半軸上,點E是對角線AC上一點,連接OE、BE,BE的延長線交OA于點P,若△OCE的面積為12.

(1)求點E的坐標:
(2)求△OPE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點A(﹣1,3)和點(2,﹣3),

(1)求一次函數(shù)的解析式;

(2)判斷點C(﹣2,5)是否在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【新知理解】

如圖①,點C在線段AB上,圖中共有三條線段AB、ACBC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB巧點”.

線段的中點__________這條線段的巧點;(填不是.

AB = 12cm,點C是線段AB的巧點,則AC=___________cm;

【解決問題】

3如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點PQ同時出發(fā),當其中一點到達終點時,運動停止,設移動的時間為ts.t為何值時,AP、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(知識情境)通常情況下,用兩種不同的方法計算同一個圖形的面積,可以得到一個恒等式.

(1)如圖1,在邊長為的正方形中挖掉一個邊長為的小正方形.把余下的部分剪拼成一個長方形(如圖2).通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是______________;

(拓展探究)類似地,用兩種不同的方法計算同一個幾何體的體積,也可以得到一個恒等式.

如圖3是邊長為的正方體,被如圖所示的分割線分成塊.

圖3

(2)用不同的方法計算這個正方體的體積,就可以得到一個恒等式,這個恒等式可以為:

_________________________________________________________________;

(3)已知,,利用上面的恒等式求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,平分,交邊于點

1)如圖1,過點,若已知,求的度數(shù);

1

2)如圖2,過點,若恰好又平分,求的度數(shù);

2

3)如圖3,平分的外角,交的延長線于點,作,設,試求的值.(用含有的代數(shù)式表示)

3

4)如圖4,在圖3的基礎上分別作的角平分線,交于點,作,設,試直接寫出的值.(用含有的代數(shù)式表示)

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OD平分∠BOFOECDO,若∠EOFα,下列說法①∠AOCα90°;②∠EOB180°α;③∠AOF360°,其中正確的是(

A. ①②B. ①③C. ②③D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC在平面直角坐標系中的位置如圖所示.將△ABC向右平移6個單位長度,再向下平移6個單位長度得到△A1B1C1(圖中每個小方格邊長均為1個單位長度)

1)在圖中畫出平移后的△A1B1C1;

2)直接寫出△A1B1C1各頂點的坐標

3)求出△A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EF分別在AB,AD上,且BEAF,連接CE,BF相交于點G,則下列結論不正確的是( )

A. BFCE B. ∠AFB∠ECD C. BF⊥CE D. ∠AFB∠BEC90°

查看答案和解析>>

同步練習冊答案