估算﹣2的值( 。

  A. 在1到2之間 B. 在2到3之間 C. 在3到4之間 D. 在4到5之間


C解:∵5<<6,

∴3<﹣2<4.                                       故選C.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


擲一枚質(zhì)地均勻的正方體骰子(六個面上分別刻有1到6的點數(shù)),向上一面出現(xiàn)的點數(shù)大于2且小于5的概率為                 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,將等邊△OAB繞O點按逆時針方向旋轉(zhuǎn)150°,得到△OA′B′(點A′,B′分別是點A,B的對應點),則∠1=  °.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F(xiàn),使AE=CF,依次連接B,F(xiàn),D,E各點.

(1)求證:△BAE≌△BCF;

(2)若∠ABC=50°,則當∠EBA=   °時,四邊形BFDE是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(0,3),且當x=1時,y有最小值2.

(1)求a,b,c的值;

(2)設二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實數(shù)),它的圖象的頂點為D.

①當k=1時,求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點坐標;

②請在二次函數(shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個點M,N,不論k取何值,這兩個點始終關于x軸對稱,直接寫出點M,N的坐標(點M在點N的上方);

③過點M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點P,當k為何值時,點D在∠NMP的平分線上?

④當k取﹣2,﹣1,0,1,2時,通過計算,得到對應的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請問:頂點的橫、縱坐標是變量嗎?縱坐標是如何隨橫坐標的變化而變化的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


分解因式:a2﹣4b2= 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


先化簡,再求值:,其中a=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算:=  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.

[探究發(fā)現(xiàn)]

小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.

根據(jù)“邊角邊”,可證△CEH≌   ,得EH=ED.

在Rt△HBE中,由 勾股 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關系是   

[實踐運用]

(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);

(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結(jié)論,求正方形的邊長及MN的長.

查看答案和解析>>

同步練習冊答案