【題目】(2016云南省第23題)有一列按一定順序和規(guī)律排列的數(shù):
第一個(gè)數(shù)是;
第二個(gè)數(shù)是;
第三個(gè)數(shù)是;
…
對(duì)任何正整數(shù)n,第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于.
(1)經(jīng)過探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個(gè)數(shù)為a,那么,,,哪個(gè)正確?
請(qǐng)你直接寫出正確的結(jié)論;
(2)請(qǐng)你觀察第1個(gè)數(shù)、第2個(gè)數(shù)、第3個(gè)數(shù),猜想這列數(shù)的第n個(gè)數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于”;
(3)設(shè)M表示,,,…,,這2016個(gè)數(shù)的和,即,
求證:.
【答案】(1)、第5個(gè);(2)、;證明過程見解析;(3)、證明過程見解析.
【解析】
試題分析:(1)、由已知規(guī)律可得;(2)、先根據(jù)已知規(guī)律寫出第n、n+1個(gè)數(shù),再根據(jù)分式的運(yùn)算化簡可得;
(3)、將每個(gè)分式根據(jù)﹣=<<=﹣,展開后再全部相加可得結(jié)論.
試題解析:(1)由題意知第5個(gè)數(shù)a==;
(2)∵第n個(gè)數(shù)為,第(n+1)個(gè)數(shù)為,
∴+=(+)=×=×=,
即第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于;
(3)∵1﹣=<=1,
=<<=1﹣,
﹣=<<=﹣,
…
﹣=<<=﹣,
﹣=<<=﹣,
∴1﹣<+++…++<2﹣,
即<+++…++<,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD,僅從下列條件中任取兩個(gè)加以組合,使得ABCD是平行四邊形,一共有多少種不同的組合? AB∥CD BC∥AD AB=CD BC=AD( )
A.2組
B.3組
C.4組
D.6組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD=BC,若四邊形ABCD是平行四邊形,則還應(yīng)滿足( )
A.∠A+∠C=180°
B.∠B+∠D=180°
C.∠A+∠B=180°
D.∠A+∠D=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果把拋物線y=﹣2x2向上平移1個(gè)單位,那么得到的拋物線的表達(dá)式是( )
A. y=﹣2(x+1)2 B. y=﹣2(x﹣1)2 C. y=﹣2x2+1 D. y=﹣2x2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣東省梅州市第15題)如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)[來為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)(m﹣1,﹣1)與點(diǎn)(5,﹣1)關(guān)于y軸對(duì)稱,則m=( )
A.4B.﹣4C.5D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山西省第19題)請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):
阿基米德折弦定理
阿基米德(Archimedes,公元前287~公元212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一.他與牛頓、高斯并稱為三大數(shù)學(xué)王子.
阿拉伯Al-Biruni(973年~1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.
阿基米德折弦定理:如圖1,AB和BC是的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.
下面是運(yùn)用“截長法”證明CD=AB+BD的部分證明過程.
證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.∵M是的中點(diǎn), ∴MA=MC ...
任務(wù):(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖(3),已知等邊△ABC內(nèi)接于,AB=2,D為上一點(diǎn), ,AE⊥BD與點(diǎn)E,則△BDC的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省邵陽市第23題)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購買一批足球,已知購買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價(jià).
(2)求該校購買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com