【題目】如圖,B. F. C.E在一條直線上(F,C之間不能直接測量),A,D在直線l的異側(cè),測得AB=DE,ABDE,ACDF.

(1)求證:ABC≌△DEF;

(2)BE=13mBF=4m,求FC的長度.

【答案】1)見解析;(25m

【解析】

1)先根據(jù)平行線的性質(zhì)∠ABC=DEF,∠ACB=DFE,再根據(jù)AAS即可證明.
2)根據(jù)全等三角形的性質(zhì)即可解答.

1)證明:∵ABDE,
∴∠ABC=DEF,
ACDF,
∴∠ACB=DFE,
在△ABC與△DEF中,

∴△ABC≌△DEF;(AAS
2)∵△ABC≌△DEF,
BC=EF,
BF+FC=EC+FC,
BF=EC
BE=13m,BF=4m
FC=BE-BF-EC=13-4-4=5m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于兩點,與軸交于點,其中.

(1)若直線經(jīng)過兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;

(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下.若每千克漲價1元,日銷售量將減少20千克.

(1)現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應漲價多少元?

(2)每千克水果漲價多少元時,商場每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為倡導低碳生活,綠色出行,某自行車俱樂部利用周末組織遠游騎行活動,自行車隊從甲地出發(fā),目的地為乙地,在自行車隊出發(fā)小時后,恰有一輛郵政車從甲地出發(fā),沿自行車隊行進路線前往乙地,到達乙地后立即按原路返回甲地.自行車隊與郵政車行駛速度均保持不變,并且郵政車行駛速度是自行車隊行駛速度的.如圖所示的是自行車隊、郵政車離甲地的路程與自行車隊離開甲地的時間的關(guān)系圖象,請根據(jù)圖象提供的信息,回答下列問題.

1)自行車隊行駛的速度是 ;郵政車行駛的速度是 ; .

2)郵政車出發(fā)多少小時與自行車隊相遇?

3)當郵政車與自行車隊相距時,此時離郵政車出發(fā)經(jīng)過了多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分別為BD、BC上的動點,那么CM+MN的最小值是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

(1)完成表中填空① ;

(2)請計算甲六次測試成績的方差;

(3)若乙六次測試成績方差為,你認為推薦誰參加比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結(jié)EMAC于點N,連結(jié)DM、CM以下說法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊邊長為a的正方形ABCD,使點C落在邊AB上的點M處(不與點A,B重合),點D落在點 N處,折痕EF分別與邊BC、AD交于點E、F,MN與邊AD交于點G.

證明:(1)AGM∽△BME;

(2)若MAB中點,則;

(3)AGM的周長為2a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生小明將線段的垂直平分線上的點,稱作線段軸點”.其中,當時,稱為線段長軸點;當時,稱為線段短軸點”.

1)如圖1,點的坐標分別為,則在,,中線段短軸點______.

2)如圖2,點的坐標為,點軸正半軸上,且.

①若為線段長軸點,則點的橫坐標的取值范圍是(

A. B. C. D.

②點軸上的動點,點,在線段的垂直平分線的同側(cè).為線段軸點,當線段的和最小時,求點的坐標.

查看答案和解析>>

同步練習冊答案