(1)計算:(-
1
3
-1-2÷
16
+(3.14-π)0×cos60°;
(2)已知x=3是關(guān)于不等式3x-
ax+2
2
2x
3
的解,求a的取值范圍.
考點:實數(shù)的運算,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪,不等式的解集,特殊角的三角函數(shù)值
專題:計算題
分析:(1)原式第一項利用負(fù)指數(shù)冪法則計算,第二項利用平方根定義計算,第三項利用零指數(shù)冪及特殊角的三角函數(shù)值計算即可得到結(jié)果;
(2)把x=3代入不等式求出a的范圍即可.
解答:解:(1)原式=-3-
1
2
+
1
2
=-3;
(2)不等式去分母得:18x-3ax-6>4x,
把x=3代入得:3a<12,
解得:a<4.
點評:此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為2,點E在邊AD上(不與A、D重合),點F在邊CD上,且∠EBF=45°.△ABE的外接圓O與BC、BF分別交于點G、H.

(1)在圖1中作出圓O,并標(biāo)出點G和點H;
(2)若EF∥AC,試說明
BG
GH
的大小關(guān)系,并說明理由;
(3)如圖2所示,若圓O與CD相切,試求△BEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB∥CD,AD與BC相交于點O,且
AB
CD
=
2
3

(1)求
AO
AD
的值.
(2)如果
AO
=
a
,請用
a
表示
DA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙M與⊙N的半徑分別為1和5,若兩圓相切,那么這兩圓的圓心距MN的長等于(  )
A、4B、6C、4或5D、4或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(a)所示,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(-9,0),直線L的解析式為:y=-2x,在直線L上有一點B使得△ABO的面積為27.
(1)求點B的坐標(biāo);
(2)如圖(b),在當(dāng)點B在第二象限時,四邊形OABC為直角梯形,OA∥BC,求梯形OABC的面積;
(3)在(2)的條件下是否存在直線m經(jīng)過坐標(biāo)原點O,且將直角梯形OABC的面積分為1:5的兩部分?若存在請直接寫出直線m的解析式;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知兩圓半徑分別是3和4,若兩圓內(nèi)切,則兩圓的圓心距為( 。
A、1或7B、1C、7D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線為該圖形的黃金分割線.
問題探究:
(1)研究小組猜想:在△ABC中,若點D為AB上的黃金分割點,如圖②,則直線CD是△ABC的黃金分割線,你認(rèn)為呢?為什么?
(2)研究小組在進一步探究中發(fā)現(xiàn):過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF如圖③,則直線EF也是△ABC的黃金分割線,請你說明理由.
(3)如圖④,點E是平行四邊形ABCD的邊AB的黃金分割點,過點E作EF∥AD,交CD于點F,顯然直線EF是平行四邊形的黃金分割線,請你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過四邊形ABCD各邊黃金分割點.
(4)如圖⑤等腰梯形ABCD,請你畫出它的一條黃金分割線,使它不經(jīng)過各邊的黃金分割點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我國在2009到2012四年中,各級政府投入醫(yī)療衛(wèi)生領(lǐng)域資金達(dá)到11500億元人民幣,將“11500億元”用科學(xué)記數(shù)法表示為( 。
A、1.15×1011
B、0.115×1015
C、1.15×1012
D、1.15×1015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=(x-1)2向左平移2個單位,所得拋物線的表達(dá)式為( 。
A、y=(x+1)2
B、y=(x-3)2
C、y=(x-1)2+2
D、y=(x-1)2-2

查看答案和解析>>

同步練習(xí)冊答案