【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內部)經(jīng)過B、C兩點,交AB于點E,過點E作⊙O的切線交AC于點F.延長CO交AB于點G,作ED∥AC交CG于點D
(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.
【答案】
(1)
解:連接CE,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠B=45°,
∵EF是⊙O的切線,
∴∠FEC=∠B=45°,∠FEO=90°,
∴∠CEO=45°,
∵DE∥CF,
∴∠ECD=∠FEC=45°,
∴∠EOC=90°,
∴EF∥OD,
∴四邊形CDEF是平行四邊形;
(2)
解:過G作GN⊥BC于M,
∴△GMB是等腰直角三角形,
∴MB=GM,
∵四邊形CDEF是平行四邊形,
∴∠FCD=∠FED,
∵∠ACD+∠GCB=∠GCB+∠CGM=90°,
∴∠CGM=∠ACD,
∴∠CGM=∠DEF,
∵tan∠DEF=2,
∴tan∠CGM= =2,
∴CM=2GM,
∴CM+BM=2GM+GM=3,
∴GM=1,
∴BG= GM= .
【解析】(1)連接CE,根據(jù)等腰直角三角形的性質得到∠B=45°,根據(jù)切線的性質得到∠FEC=∠B=45°,∠FEO=90°,根據(jù)平行線的性質得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到結論;(2)過G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根據(jù)平行四邊形的性質得到∠FCD=∠FED,根據(jù)余角的性質得到∠CGM=∠ACD,等量代換得到∠CGM=∠DEF,根據(jù)三角函數(shù)的定義得到CM=2GM,于是得到結論.
【考點精析】通過靈活運用平行四邊形的判定與性質和切線的性質定理,掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知點(﹣1,y1),(4,y2)在一次函數(shù)y=3x﹣2的圖象上,則y1 , y2 , 0的大小關系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為培養(yǎng)學生數(shù)學學習興趣,某校七年級準備開設“神奇魔方”、“魅力數(shù)獨”、“數(shù)學故事”、“趣題巧解”四門選修課(每位學生必須且只選其中一門).
(1)學校對七年級部分學生進行選課調查,得到如圖所示的統(tǒng)計圖.根據(jù)該統(tǒng)計圖,請估計該校七年級480名學生選“數(shù)學故事”的人數(shù).
(2)學校將選“數(shù)學故事”的學生分成人數(shù)相等的A,B,C三個班,小聰、小慧都選擇了“數(shù)學故事”,已知小聰不在A班,求他和小慧被分到同一個班的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小黃準備給長8m,寬6m的長方形客廳鋪設瓷磚,現(xiàn)將其劃分成一個長方形ABCD區(qū)域Ⅰ(陰影部分)和一個環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設,且滿足PQ∥AD,如圖所示.
(1)若區(qū)域Ⅰ的三種瓷磚均價為300元/m2 , 面積為S(m2),區(qū)域Ⅱ的瓷磚均價為200元/m2 , 且兩區(qū)域的瓷磚總價為不超過12000元,求S的最大值;
(2)若區(qū)域Ⅰ滿足AB:BC=2:3,區(qū)域Ⅱ四周寬度相等
①求AB,BC的長;
②若甲、丙兩瓷磚單價之和為300元/m2 , 乙、丙瓷磚單價之比為5:3,且區(qū)域Ⅰ的三種瓷磚總價為4800元,求丙瓷磚單價的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形DEFG都是正方形,點E,G分別在AD,CD上,連接AF,BF,CF.
(1)求證:AF=CF;
(2)若∠BAF=35°,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度當點M第一次到達B點時,M、N同時停止運動.
點M、N運動幾秒后,M、N兩點重合?
點M、N運動幾秒后,可得到等邊三角形?
當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com