【題目】如圖,在中,AD的中線,過(guò)點(diǎn)AAB的平行線DE交于點(diǎn)AC相交于點(diǎn)O,連接EC

求證: ;

當(dāng)滿足條件______時(shí),四邊形ADCE是菱形,請(qǐng)補(bǔ)充條件并證明.

【答案】

【解析】試題分析:1)根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形可得四邊形ABDE是平行四邊形,進(jìn)而可得再根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可得四邊形ADCE是平行四邊形,進(jìn)而可得ADEC;
2)添加,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得

然后證明可得四邊形是菱形.

試題解析:
(1)AEBC,ABDE,

∴四邊形ABDE是平行四邊形,

AE=BD,

AD是△ABC的中線,

BD=CD,

AE=DC,

AEBC

∴四邊形ADCE是平行四邊形,

ADEC;

(2)添加

AD是△ABC的中線,

∵四邊形ADCE是平行四邊形,

∴四邊形ADCE是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得   ;

(Ⅱ)解不等式②,得   ;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):

(Ⅳ)原不等式組的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知ADBCB=D

(1)求證:ABCD;

(2)如圖2,點(diǎn)EBA延長(zhǎng)線上一點(diǎn),∠EAD與∠BCD的角平分線交于點(diǎn)P

求∠APC的度數(shù);

②連接DP,若∠PDC=750,則∠DPC-B=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnCnCn1 , 使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是( )

A.(2n1 , 2n﹣1)
B.(2n , 2n﹣1)
C.(2n1 , 2n+1)
D.(2n1 , 2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點(diǎn),若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)D重合,此時(shí),底面圓的直徑為10cm,則圓柱上M,N兩點(diǎn)間的距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(﹣1,﹣2),拋物線F:y=x2﹣2mx+m2﹣2與直線x=﹣2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過(guò)點(diǎn)C時(shí),求它的表達(dá)式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為yP , 求yP的最小值,此時(shí)拋物線F上有兩點(diǎn)(x1 , y1),(x2 , y2),且x1<x2≤﹣2,比較y1與y2的大;
(3)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,對(duì)于點(diǎn)P(x,y),我們把P’(y1,x1)叫做點(diǎn)P的友好點(diǎn),已知點(diǎn)的友好點(diǎn)為,點(diǎn)的友好點(diǎn)為,點(diǎn)的友好點(diǎn)為,,這樣依次得到點(diǎn).

(1)當(dāng)點(diǎn)的坐標(biāo)為(2,1),則點(diǎn)的坐標(biāo)為___,點(diǎn)的坐標(biāo)為___

(2)的坐標(biāo)為(3,2),則設(shè) (x,y),求x+y的值;

(3)設(shè)點(diǎn)A1的坐標(biāo)為(a,b),,,,…,點(diǎn)均在y軸左側(cè),求a、b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時(shí)小聰從B地出發(fā)向A地行走,如圖所示,相交于點(diǎn)P的兩條線段、分別表示小敏、小聰離B地的距離與已用時(shí)間之間的關(guān)系,則小敏、小聰行走的速度分別是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省教育廳下發(fā)了《在全省中小學(xué)幼兒園廣泛深入開(kāi)展節(jié)約教育》的通知,通知中要求各學(xué)校全面持續(xù)開(kāi)展光盤(pán)行動(dòng)”.某市教育局督導(dǎo)檢查組為了調(diào)查學(xué)生對(duì)節(jié)約教育內(nèi)容的了解程度(程度分為:“A—了解很多”,“B—了解較多”,“C—了解較少”,“D—不了解”),對(duì)本市一所中學(xué)的學(xué)生進(jìn)行了抽樣調(diào)查,我們將這次調(diào)查的結(jié)果繪制成以下兩幅統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問(wèn)題:

(1)本次抽樣調(diào)查了多少名學(xué)生?

(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;

(3)若該中學(xué)共有1 800名學(xué)生,請(qǐng)你估計(jì)這所中學(xué)的所有學(xué)生中,對(duì)節(jié)約教育內(nèi)容了解較多的有多少名?

查看答案和解析>>

同步練習(xí)冊(cè)答案