【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.

(1)證明:BC=DE;

(2)若AC=12,求四邊形ABCD的面積.

【答案】(1)見解析;(2) 72.

【解析】試題分析:(1由等角角的余角相等求出∠BAC=EAD,根據(jù)SAS推出ABC≌△ADE;(2)由全等三角形的性質(zhì)得出SABCSADE推出四邊形ABCD的面積=三角形ACE的面積,即可得出答案.

試題解析:(1∵∠BADCAE90°

∴∠BACCADEADCAD,

∴∠BACEAD.

ABCADE中,

∴△ABC≌△ADE(SAS)

BC=DE.

2∵△ABC≌△ADE ,

SABCSADE,

S四邊形ABCDSABCSACDSADESACDSACE×12272.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x3y9xy=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將45°AOB按下面的方式放置在一把刻度尺上:頂點(diǎn)O與尺下沿的端點(diǎn)重合,OA與尺下沿重合,OB與尺上沿的交點(diǎn)B在尺上的讀數(shù)恰為2cm.若按相同的方式將37°AOC放置在該刻度尺上,則OC與尺上沿的交點(diǎn)C在尺上的讀數(shù)約為 cm.(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣5,0),B(3,0).
(1)在y軸上找一點(diǎn)C,使之滿足SABC=16,求點(diǎn)C的坐標(biāo)(要有必要的步驟);
(2)在直角坐標(biāo)平面上找一點(diǎn)C,能滿足SABC=16的C有多少個?這些點(diǎn)有什么特征?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一次函數(shù)y=2x-5,如果x1<x2,那么y1________y2(填“>”、、“<”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中正確的是(
A.3a2+2a2=5a4
B.﹣2a2÷a2=4
C.(2a23=2a6
D.a(a﹣b+1)=a2﹣ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式和不等式組:
(1)x為何值時,代數(shù)式 的值比 的值大1.
(2)解不等式組: ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Pm,n)在第一象限,且在直線y=-x+6上,點(diǎn)A的坐標(biāo)為(5,0),O是坐標(biāo)原點(diǎn),PAO的面積是S.

1Sm的函數(shù)關(guān)系式,并畫出函數(shù)S的圖象;

2小杰認(rèn)為PAO的面積可以為15,你認(rèn)為呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=21,BC=13,DAC邊上一點(diǎn),BD=12,AD=16,E是邊AB的中點(diǎn),求線段DE的長

查看答案和解析>>

同步練習(xí)冊答案