【題目】甲、乙兩家旅行社為了吸引更多的顧客,分別推出赴某地旅游的團體(多于4人)優(yōu)惠辦法.甲旅行社的優(yōu)惠辦法是:買4張全票,其余人按半價優(yōu)惠;乙旅行社的優(yōu)惠辦法是:所有人都打七五折優(yōu)惠.已知這兩家旅行社的原價均為每人1000元,那么隨著團體人數(shù)的變化,哪家旅行社的收費更優(yōu)惠.

【答案】當團體人數(shù)超過8人時,選甲旅行社收費更優(yōu)惠;當團體人數(shù)為8人時,兩家旅行社收費相同;當團體人數(shù)少于8人時,選乙旅行社收費更優(yōu)惠.

【解析】

設(shè)團體有x人,收費y元,得出y=4000+500x-4=500x+2000y=750x,再分情況列不等式和方程求解可得.

設(shè)團體有人,收費

∵當時,,解得

∴當時,,解得;

時,,解得

∴當團體人數(shù)超過8人時,選甲旅行社收費更優(yōu)惠;

當團體人數(shù)為8人時,兩家旅行社收費相同;

當團體人數(shù)少于8人時,選乙旅行社收費更優(yōu)惠.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校八、九兩個年級各有學生180人,為了解這兩個年級學生的體質(zhì)健康情況,進行了抽樣調(diào)查,過程如下,請補充完整.

收集數(shù)據(jù)

從八、九兩個年級各隨機抽取名學生,進行了體質(zhì)健康測試,測試成績(百分制)如下:

八年級

九年級

整理、描述數(shù)據(jù)

按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

八年級

0

0

1

11

1

九年級

1

0

0

7

(說明:成績分及以上為體質(zhì)健康優(yōu)秀,~分為體質(zhì)健康良好,~分為體質(zhì)健康合格,分以下為體質(zhì)健康不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級

33.6

九年級

52.1

請將以上兩個表格補充完整;

得出結(jié)論

(1)估計九年級體質(zhì)健康優(yōu)秀的學生人數(shù)為__________;

(2)可以推斷出_______年級學生的體質(zhì)健康情況更好一些,理由為_________________.(至少從兩個不同的角度說明推斷的合理性).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,且OA=OB

1)求證:四邊形ABCD是矩形;

2)若AB=5,∠AOB=60°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人分別從相距100kmA、B兩地同時出發(fā)相向而行,并以各自的速度勻速行駛.甲出發(fā)2h后到達B地立即按原路返回,返回時速度提高了30km/h,回到A地后在A地休息等乙,乙在出發(fā)5h后到達A地.(友情提醒:可以借助用線段圖分析題目)

1)乙的速度是_______,甲從A地到B地的速度是_______,甲在出發(fā)_______小時到達A地.

2)出發(fā)多長時間兩人首次相遇?

3)出發(fā)多長時間時,兩人相距30千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)探究新知:如圖1,已知的面積相等,試判斷的位置關(guān)系,并說明理由.

2)結(jié)論應(yīng)用:

如圖2,點,在反比例函數(shù)的圖像上,過點軸,過點軸,垂足分別為,連接.試證明:.

中的其他條件不變,只改變點,的位置如圖3所示,請畫出圖形,判斷的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有個點A(1,0),點A1次向上跳動1個單位至點A1(11),緊接著第2次向右跳動2個單位至點A2(1,1),第3次向上跳動1個單位至點A3,第4次向左跳動3個單位至點A4,第5次又向上跳動1個單位至點A5,第6次向右跳動4個單位至點A6,……,依此規(guī)律跳動下去,點A2019次跳動至點A2019的坐標是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點Ax軸負半軸上,頂點Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過點C、D,則點B的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,并回答下列問題

如圖1,以AB為軸,把△ABC翻折180°,可以變換到△ABD的位置;

如圖2,把△ABC沿射線AC平移,可以變換到△DEF的位置.像這樣,其中的一個三角形是另一個三角形經(jīng)翻折、平移等方法變換成的,這種只改變位置,不改變形狀大小的圖形變換,叫三角形的全等變換.班里學習小組針對三角形的全等變換進行了探究和討論

1)請你寫出一種全等變換的方法(除翻折、平移外),   

2)如圖2,前進小組把△ABC沿射線AC平移到△DEF,若平移的距離為2,且AC5,則DC   

3)如圖3,圓夢小組展開了探索活動,把△ABC紙片沿DE折疊,使點A落在四邊形BCDE內(nèi)部點A′的位置,且得出一個結(jié)論:2A′=∠1+∠2.請你對這個結(jié)論給出證明.

4)如圖4,奮進小組則提出,如果把△ABC紙片沿DE折疊,使點A落在四邊形BCDE外部點A′的位置,此時∠A′與∠1、∠2之間結(jié)論還成立嗎?若成立,請給出證明,若不成立,寫出正確結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為4,分別為直線、上兩點.

1)如圖1,點上,點上,,求證:.

2)如圖2,點延長線上一點,作的延長線于,作,求的長.

3)如圖3,點的延長線上,,點上,,直線,連接,設(shè)的面積為,直接寫出的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案