【題目】如圖,在中,,,,垂足為點(diǎn),過點(diǎn)作射線,點(diǎn)是邊上任意一點(diǎn),連接并延長與射線相交于點(diǎn),設(shè),兩點(diǎn)之間的距離為,過點(diǎn)作直線的垂線,垂足為.岑岑同學(xué)思考后給出了下面五條結(jié)論,正確的共有( )
①;
②當(dāng)時(shí),;
③當(dāng)時(shí),四邊形是平行四邊形;
④當(dāng)或時(shí),都有;
⑤當(dāng)時(shí),與一定相似.
A.2條B.3條C.4條D.5條
【答案】C
【解析】
根據(jù)相似三角形的判定以及平行四邊形的判定與性質(zhì),以及全等三角形的判定方法分別進(jìn)行分析即可得出答案.
解:①∵AB=BC=10,AC=12,BO⊥AC,
∴AO=CO,AB=BC,BO=BO,
∴△AOB≌△COB;
故此選項(xiàng)正確;
②∵AE∥BC,
∴∠AQO=∠OCP,
∵AO=CO,∠AOQ=∠POC,
∴當(dāng)0<x<10時(shí),△AOQ≌△COP;
故此選項(xiàng)正確;
③當(dāng)x=5時(shí),
∴BP=PC=5,
∵AQ=PC,
∴AQ=PB=5,
∵AQ∥BC,
∴四邊形ABPQ是平行四邊形;
故此選項(xiàng)正確;
④當(dāng)x=0時(shí),P與B重合,
∴∠OBC=∠QPR,
又∵∠BOC=∠PRQ=90°,
∴△BCO∽△PQR;
當(dāng)x=10時(shí),P與C重合,此時(shí)Q與A重合,
∵∠QPR=∠BPO,∠QRP=∠BOC=90°,
∴△QRP∽△BOC,
當(dāng)x=0時(shí),△BCO∽△PQR與△PQR∽△CBO不相符;故此選項(xiàng)錯(cuò)誤;
⑤若△PQR與△CBO一定相似,
則∠QPR=∠BCO,
故OP=OC=6,
過點(diǎn)O作OH⊥BC于H,
由射影定理得CO2=CHCB,
可求得CH=CP=3.6,
故CP=7.2,所以BP=x=2.8
故當(dāng)時(shí),△PQR與△CBO一定相似.
故此選項(xiàng)正確.
故正確的有4條.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學(xué)教材第94頁的部分內(nèi)容.
線段垂直平分線
我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段的垂直平分線,是上任一點(diǎn),連結(jié)、,將線段與直線對稱,我們發(fā)現(xiàn)與完全重合,由此都有:線段垂直平分線的性質(zhì)定理,線段垂直平分線上的點(diǎn)到線段的距離相等.
已知:如圖,,垂足為點(diǎn),,點(diǎn)是直線上的任意一點(diǎn).
求證:.
圖中的兩個(gè)直角三角形和,只要證明這兩個(gè)三角形全等,便可證明(請寫出完整的證明過程)
請根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程,定理應(yīng)用.
(1)如圖②,在中,直線、、分別是邊、、的垂直平分線.
求證:直線、、交于點(diǎn).
(2)如圖③,在中,,邊的垂直平分線交于點(diǎn),邊的垂直平分線交于點(diǎn),若,,則的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四個(gè)命題,則一定正確命題的序號是( )
①x=1是二次方程ax2+bx+c=0的一個(gè)實(shí)數(shù)根;
②二次函數(shù)y=ax2+bx+c的開口向下;
③二次函數(shù)y=ax2+bx+c的對稱軸在y軸的左側(cè);
④不等式4a+2b+c>0一定成立.
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在內(nèi)角不確定的△ABC中,AB=AC,點(diǎn)E、F分別在AB、AC上,EF∥BC,平行移動(dòng)EF,如果梯形EBCF有內(nèi)切圓.
當(dāng)=時(shí),sinB=;
當(dāng)=時(shí),sinB=(提示:=);當(dāng)=時(shí),sinB=.
(1)請你根據(jù)以上所反映的規(guī)律,填空:當(dāng)=時(shí),sinB的值等于______;
(2)當(dāng)=時(shí)(n是大于1的自然數(shù)),請用含n的代數(shù)式表示sinB=______,并畫出圖形、寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象l與y軸交于點(diǎn)A(0 , 2),與一次函數(shù)y=x﹣3的圖象l交于點(diǎn)E(m ,﹣5).
(1)m=__________;
(2)直線l與x軸交于點(diǎn)B,直線l與y軸交于點(diǎn)C,求四邊形OBEC的面積;
(3)如圖2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的邊PQ在x軸上平移,若矩形MNPQ與直線l或l有交點(diǎn),直接寫出a的取值范圍_____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)絡(luò)時(shí)代,新興詞匯層出不窮.為了解大眾對網(wǎng)絡(luò)詞匯的理解,某興趣小組舉行了一個(gè)“我是路人甲”的調(diào)查活動(dòng):選取四個(gè)熱詞A:“硬核人生”,B:“好嗨哦”,C:“雙擊666”,D:“杠精時(shí)代”在街道上對流動(dòng)人群進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位只能勾選一個(gè)最熟悉的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名路人.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形圖中的b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小山頂上有一信號塔AB,山坡BC的傾角為30°,現(xiàn)為了測量塔高AB,測量人員選擇山腳C處為一測量點(diǎn),測得塔頂仰角為45°,然后順山坡向上行走100米到達(dá)E處,再測得塔頂仰角為60°,求塔高AB.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當(dāng)將遮陽傘撐開至OD位置時(shí),測得∠ODB=45°,當(dāng)將遮陽傘撐開至OE位置時(shí),測得∠OEC=30°,且此時(shí)遮陽傘邊沿上升的豎直高度BC為20cm,求若當(dāng)遮陽傘撐開至OE位置時(shí)傘下陰涼面積最大,求此時(shí)傘下半徑EC的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,于點(diǎn).
(1)如圖所示,點(diǎn),分別在線段,上,且,當(dāng),時(shí),求線段的長;
(2)如圖所示,點(diǎn),分別在,上,且,求證:;
(3)如圖所示,點(diǎn)在的延長線上,點(diǎn)在上,且,請直接寫出,,三者的等量關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com