【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校組織800名學(xué)生參加了一次“漢字聽寫”大賽.賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于60分,為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績作為樣本,成績?nèi)缦拢?/span>

90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,83,100,73,76,80,77,81,86,75,82,85,71,68,74,98,90,97,85,84,78,73,65,92,96,60

對(duì)上述成績進(jìn)行了整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績x/分

頻數(shù)

頻率

60≤x<70

6

0.15

70≤x<80

a

b

80≤x<90

14

0.35

90≤x≤100

c

d

請(qǐng)根據(jù)所給信息,解答下列問題:

(1)a   ,d   

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖

(3)若成績?cè)?0分以上(包括90分)的為“優(yōu)等,請(qǐng)你估計(jì)參加這次比賽的800名學(xué)生中成績“優(yōu)”等的約有多少人?

【答案】(1)10、0.25;(2)詳見解析;(3)200人.

【解析】

(1)根據(jù)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)即可.

(2)根據(jù)(1)計(jì)算出的的頻數(shù)補(bǔ)充直方圖.

(3)根據(jù)“優(yōu)”的人數(shù)=總?cè)藬?shù)“優(yōu)”的頻率 即可解決問題.

解:(1)由已知數(shù)據(jù)知a=10、c=10,

∴d=10÷(6+10+14+10)=0.25,

故答案為:10、0.25;

(2)補(bǔ)全圖形如下:

(3)估計(jì)參加這次比賽的800名學(xué)生中成績“優(yōu)”等的約有800×0.25=200人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是提高學(xué)習(xí)效率的重要方法,善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,對(duì)照?qǐng)D形,把相關(guān)知識(shí)歸納整理如下:

一次函數(shù)與方程(組)的關(guān)系:

1)一次函數(shù)的解析式就是一個(gè)二元一次方程;

2)點(diǎn)B的橫坐標(biāo)是方程kx+b=0的解;

3)點(diǎn)C的坐標(biāo)(x,y)中xy的值是方程組①的解.

一次函數(shù)與不等式的關(guān)系:

1)函數(shù)y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式kx+b0的解集;

2)函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式②的解集.

(一)請(qǐng)你根據(jù)以上歸納整理的內(nèi)容在下面的數(shù)字序號(hào)后寫出相應(yīng)的結(jié)論:① ;② ;

(二)如果點(diǎn)B坐標(biāo)為(20),C坐標(biāo)為(1,3);

①直接寫出kx+b≥k1x+b1的解集;

②求直線BC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.在坐標(biāo)軸上找一點(diǎn)C,直線AB上找一點(diǎn)D,在雙曲線y=找一點(diǎn)E,若以O,C,D,E為頂點(diǎn)的四邊形是有一組對(duì)角為60的菱形,那么符合條件點(diǎn)D的坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點(diǎn)F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DEAM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1,ADBC,BEAC,

∴∠ADB=AEF=90°,

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC;

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM

AE=EC,

BEAC

AB=BC,

∴∠ABE=CBE

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM,

∴△BDF≌△ADM

∴∠DBF=MAD,

∵∠DBA=BAD=45°,

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE,

NAE=2NAD=2CBE,

∴∠ANE=NAE=45°,

AE=EN,

EN=AC

型】解答
結(jié)束】
17

【題目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的兩根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=3,AB=5.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨著P、Q的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB﹣BO﹣OP于點(diǎn)E.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t0).

(1)求直線AB的解析式;

(2)在點(diǎn)POA運(yùn)動(dòng)的過程中,求△APQ的面積St之間的函數(shù)關(guān)系式(不必寫出t的取值范圍);

(3)在點(diǎn)EBO運(yùn)動(dòng)的過程中,完成下面問題:

①四邊形QBED能否成為直角梯形?若能,請(qǐng)求出t的值;若不能,請(qǐng)說明理由;

②當(dāng)DE經(jīng)過點(diǎn)O時(shí),請(qǐng)你直接寫出t的值.

【答案】(1)直線AB的解析式為;(2)S=﹣t2+t;

(3)四邊形QBED能成為直角梯形.①t=②當(dāng)DE經(jīng)過點(diǎn)O時(shí),t=

【解析】分析:(1)首先由在RtAOB,OA=3,AB=5,求得OB的值,然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;
(2)過點(diǎn)QQFAO于點(diǎn)F.由△AQF∽△ABO,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,借助于方程即可求得QF的長,然后即可求得的面積St之間的函數(shù)關(guān)系式;
(3)①分別從DEQBPQBO去分析,借助于相似三角形的性質(zhì),即可求得t的值;
②根據(jù)題意可知即時(shí),則列方程即可求得t的值.

詳解:(1)RtAOB,OA=3,AB=5,由勾股定理得

A(3,0),B(0,4).

設(shè)直線AB的解析式為y=kx+b.

.解得

∴直線AB的解析式為

(2)如圖1,過點(diǎn)QQFAO于點(diǎn)F.

AQ=OP=t,AP=3t.

由△AQF∽△ABO,

(3)四邊形QBED能成為直角梯形,

①如圖2,當(dāng)DEQB時(shí),

DEPQ,

PQQB,四邊形QBED是直角梯形.

此時(shí)

由△APQ∽△ABO,

解得

如圖3,當(dāng)PQBO時(shí),

DEPQ,

DEBO,四邊形QBED是直角梯形.

此時(shí)

由△AQP∽△ABO,

3t=5(3t),

3t=155t,

8t=15,

解得

(當(dāng)PA0運(yùn)動(dòng)的過程中還有兩個(gè),但不合題意舍去).

②當(dāng)DE經(jīng)過點(diǎn)O時(shí),

DE垂直平分PQ,

EP=EQ=t,

由于PQ相同的時(shí)間和速度,

AQ=EQ=EP=t,

∴∠AEQ=EAQ,

∴∠BEQ=EBQ,

BQ=EQ,

所以

當(dāng)PAO運(yùn)動(dòng)時(shí),

過點(diǎn)QQFOBF

EP=6t,

EQ=EP=6t,

AQ=t,BQ=5t

解得:

∴當(dāng)DE經(jīng)過點(diǎn)O時(shí), .

點(diǎn)睛:本題考查知識(shí)點(diǎn)較多,勾股定理,待定系數(shù)法求一次函數(shù)解析式,相似三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握和運(yùn)用各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.

型】解答
結(jié)束】
21

【題目】如圖,反比例函數(shù)y(m0)與一次函數(shù)y=kx+b(k0)的圖象相交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(-6,2),點(diǎn)B的坐標(biāo)為(3,n).求反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)為爭創(chuàng)全國文明衛(wèi)生城,2016年區(qū)政府對(duì)區(qū)綠化工程投入的資金是2000萬元,2018年投的資金是2420萬元,且2017年和2018年,每年投入資金的年平均增長率相同.

(1)求該區(qū)對(duì)區(qū)綠化工程投入資金的年平均增長率;

(2)若投入資金的年平均增長率不變,那么該區(qū)在2020年需投入資金多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在一個(gè)邊長為a的正方形木板上鋸掉一個(gè)邊長為b的正方形, 并把余下的部分沿虛線剪開拼成圖2的形狀.

(1)請(qǐng)用兩種方法表示陰影部分的面積

1得: ; 2 ;

(2)由圖1與圖2 面積關(guān)系,可以得到一個(gè)等式: ;

(3)利用(2)中的等式,已知,且a+b=8,則a-b= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如下圖所示,且關(guān)于x的一元二次方程ax2+bx+c-m=0沒有實(shí)數(shù)根,有下列結(jié)論:①b2-4ac>0;②abc<0;③m>2.其中,正確結(jié)論的個(gè)數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師打算在小明和小白兩位同學(xué)之間選一位同學(xué)參加數(shù)學(xué)競賽,他收集了小明、小白近期10次數(shù)學(xué)考試成績,并繪制了折線統(tǒng)計(jì)圖(如圖所示)

項(xiàng)目

眾數(shù)

中位數(shù)

平均數(shù)

方差

最高分

小明

85

85

小白

70,100

85

100

(1)根據(jù)折線統(tǒng)計(jì)圖,張老師繪制了不完整的統(tǒng)計(jì)表,請(qǐng)你補(bǔ)充完整統(tǒng)計(jì)表;

(2)你認(rèn)為張老師會(huì)選擇哪位同學(xué)參加比賽?并說明你的理由

查看答案和解析>>

同步練習(xí)冊(cè)答案